imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

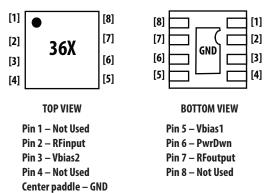
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MGA-636P8 High Linearity Low Noise Amplifier

Data Sheet



Description

Avago Technologies' MGA-636P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). This LNA has low noise and high linearity achieved through the use of Avago Technologies' proprietary 0.25 µm GaAs Enhancement-mode pHEMT process. It is housed in the miniature 2.0 x 2.0 x 0.75 mm³ 8-pin Dual-Flat-Non-Lead (DFN) package. The device is designed for optimum use from 450 MHz up to 1.5 GHz. The compact footprint and low profile coupled with low noise, high gain and high linearity make this an ideal choice as a low noise amplifier for cellular infrastructure applications such as LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA. For optimum performance at lower frequency from 1.5 GHz up to 2.5 GHz, MGA-637P8 is recommended. For optimum performance at higher frequency from 2.5 GHz up to 4 GHz, MGA-638P8 is recommended. All these 3 products, MGA-636P8, MGA-637P8 and MGA-638P8 share the same package and pinout configuration.

Pin Configuration and Package Marking

2.0 x 2.0 x 0.75 mm³ 8-lead DFN

Note:

Package marking provides orientation and identification "36" = Product Code "X" = Month Code

It is recommended to ground Pin1, 4 and 8 which are Not Used.

Features

- High linearity performance.
- Low Noise Figure.
- GaAs E-pHEMT Technology^[1].
- Low cost small package size.
- Integrated with active bias and option to access FET gate.
- Integrated power down control pin.

Specifications

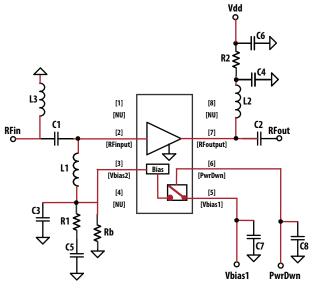
700 MHz; 4.8 V, 108 mA

- 18.8 dB Gain
- 0.44 dB Noise Figure
- 11 dB Input Return Loss
- +23.7 dBm Input IP3
- +23.8 dBm Output Power at 1 dB gain compression

Applications

- Cellular infrastructure applications such as LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA.
- Other low noise applications.

Note:


1. Enhancement mode technology employs positive Vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices.

Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 70 V ESD Human Body Model = 300 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control.

Simplified Schematic^[1]

Note:

1. Device is turned ON when PwrDwn pin is applied with 0 V or left open. Device is turned OFF when PwrDwn pin is applied with 3.3 V.

Absolute Maximum Rating $^{[1]}T_{A}{=}25^{\circ}\,C$

Symbol	Parameter	Units	Absolute Maximum
V _{dd}	Device Voltage, RF output to ground	V	5.5
l _{dd}	Drain Current	mA	130
Vbias1	Bias Voltage	V	5.5
V _{PwrDwn}	Power Down Voltage	V	5.5
P _{in,max}	CW RF Input Power	dBm	+24
P _{diss}	Total Power Dissipation	W	0.72
Tj	Junction Temperature	°C	150
T _{stg}	Storage Temperature	°C	-65 to 150

Thermal Resistance

Thermal Resistance ^[2]				
$(V_{dd} = 4.8 V, I_{dd} = 108 mA)$				
θ jc = 79.6°C/W				

Notes:

- 1. Operation of this device in excess of any of these limits may cause permanent damage.
- 2. Thermal resistance measured using Infra-Red Measurement Technique.
- 3. Power dissipation with unit turned on. Board temperature T_c is 25° C. Derate at 12.6 mW/°C for $T_C>93^\circ$ C.

Electrical Specifications^[1, 4]

 $T_A = 25^{\circ}$ C, Vdd = Vbias1 = 4.8 V, RF measurement at 700 MHz, measured on demo board in Figure 5 with component listed in Table1.

Symbol	Parameter and Test Condition	Units	Min.	Тур.	Max.
Idd	Drain Current	mA	89	108	126
I _{PwrDwn}	Current at V_{PwrDwn} pin when $V_{PwrDwn} = 3.3 V$ (Power Down mode)	mA	-	0.15	-
Gain	Gain	dB	17.5	18.8	20.5
NF ^[2]	Noise Figure	dB	-	0.44	0.8
IIP3 ^[3]	Input Third Order Intercept Point	dBm	22	23.7	-
OP1dB	Output Power at 1dB Gain Compression	dBm	_	23.8	_
IRL	Input Return Loss, 50 Ω source	dB	_	11	-
ORL	Output Return Loss, 50 Ω load	dB	_	21	_

Notes:

1. Measurements at 700 MHz obtained using demo board described in Figure 5.

2. For NF data, board losses of the input have not been de-embedded.

3. IIP3 test condition: F_{RF1} = 700 MHz, F_{RF2} = 701 MHz with input power of -10 dBm per tone.

4. Use proper bias, heatsink and derating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application note for more details.

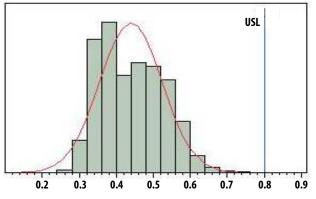
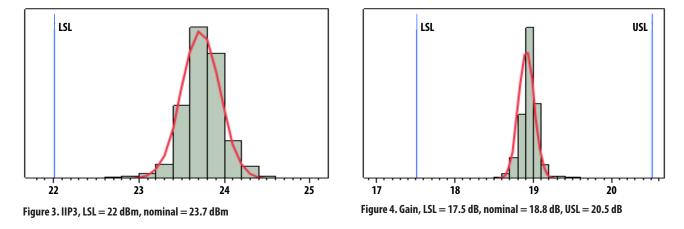
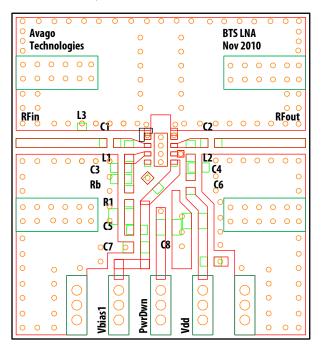



Figure 2. NF, nominal = 0.44 dB, USL = 0.8 dB



Notes:

1. Distribution data sample size is 500 samples taken from 3 different wafer lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.

2. Circuit trace losses have not been de-embedded from measurements above.

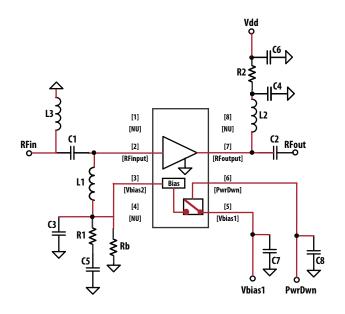

Demo Board Layout

Figure 5. Demo Board Layout Diagram

- Recommended PCB material is 10 mils Rogers RO4350.
- Suggested component values may vary according to layout and PCB material.

Demo Board Schematic

Truth Table

	V _{PwrDwn} (V)
LNA Mode	0 or open
Power Down Mode	3.3

Figure 6. Demo Board Schematic Diagram

Notes:

- The schematic is shown with the assumption that similar PCB is used for all MGA-636P8, MGA-637P8 and MGA-638P8.
- Detail of the components needed for this product is shown in Table 1.

Table 1. Component list for 700 MHz matching

Part	Size	Value	Detail Part Number
C1, C2, C4	0402	100 pF (Murata)	GRM1555C1H101JD01D
C3	0402	27 pF (Murata)	GRM1555C1H270JA01D
C5, C6, C7, C8	0603	4.7 μF (Murata)	GRM188R60J475KE19D
L1, L2	0402	33 nH (Toko)	LL1005-FHL33NJ
L3	0402	Not Used	
Rb	0402	Not Used	
R1	0402	51 ohm (Rohm)	MCR004YZPJ510
R2	0402	0 ohm (Rohm)	MCR01MZPJ000

Notes:

C1, C2 are DC blocking capacitors

L1 input match for NF

L2 output match for IP3

C3, C4, C5, C6, C7, C8 are bypass capacitors

R1 is a stabilizing resistor

Rb is the biasing resistor (not used)

Typical Performance

RF performance at $T_A = 25^{\circ}$ C, Vdd = 4.8 V, Idd = 100 mA, measured using 50 ohm input and output board unless stated otherwise. IIP3 test condition: F_{RF1} - F_{RF2} = 1 MHz with input power of -10 dBm per tone.

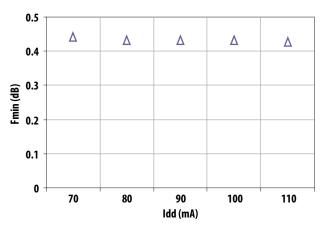


Figure 7. Fmin vs ldd at 4.8 V at 700 MHz

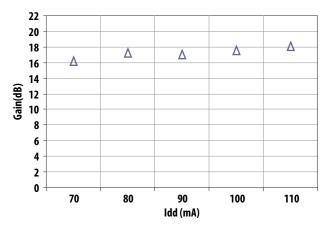


Figure 9. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 700 MHz

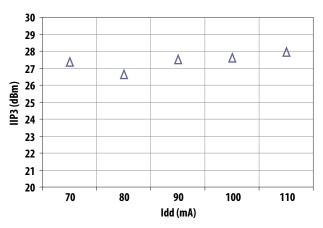


Figure 11. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 700 MHz

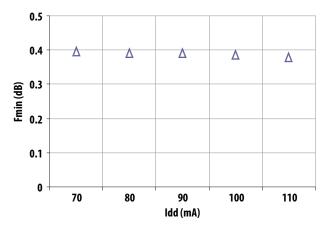


Figure 8. Fmin vs Idd at 4.8 V at 900 MHz

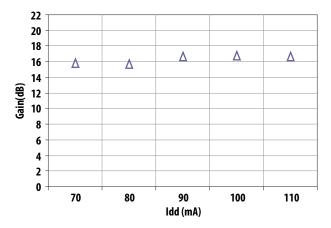


Figure 10. Gain vs ldd at 4.8 V Tuned for Optimum IIP3 and Fmin at 900 MHz

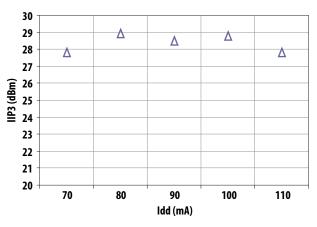
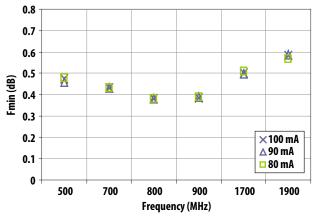



Figure 12. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 900 MHz

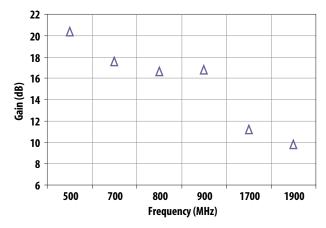


Figure 14. Gain vs Frequency for Optimum IIP3 and Fmin at 4.8 V 100 mA

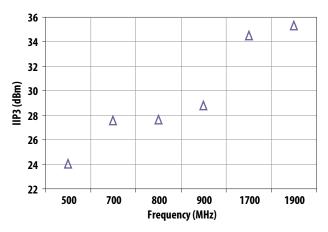


Figure 15. IIP3 vs Frequency for Optimum IIP3 and Fmin at 4.8 V 100 mA

Below is the table showing the MGA-636P8 Reflection Coefficient Parameters
tuned for Maximum IIP3, Vdd = 4.8 V, Idd = 100 mA.

Frequency	Gamma Load pos	ition	IIP3	
(GHz)	Magnitude	Angle	(dBm)	
0.50	0.36	-57.7	22.6	
0.70	0.36	-57.6	28.4	
0.80	0.36	-43.2	28.2	
0.90	0.27	-39.9	28.9	
1.70	0.27	-27.9	34.9	
1.90	0.27	0.3	35.7	

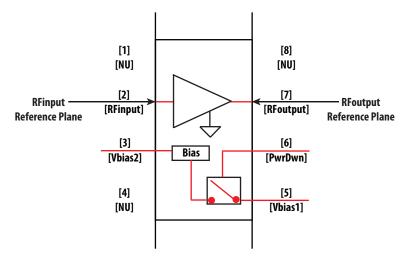


Figure 16. RFinput and RFoutput Reference Plane

Notes:

- 1. The Maximum IIP3 values are calculated based on Load pull measurements on approximately 100 different impedances using Focus Load pull test system.
- 2. Measurements are conducted on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFin pin and the output reference plane is at the end of the RFout pin as shown in Figure 16.

Typical Performance

RF performance at T_A = 25° C, Vdd = Vbias1 = 4.8 V, Idd = 108 mA, LNA mode, measured on demo board in Figure 5. Signal = CW unless stated otherwise. Application Test Circuit is shown in Figure 6 and Table 1. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -10 dBm per tone.

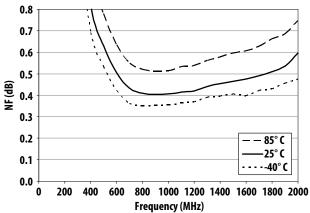


Figure 17. NF vs Frequency vs Temperature

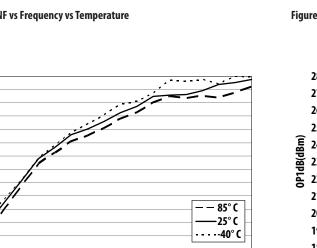


Figure 19. IIP3 vs Frequency vs Temperature

Frequency (MHz)

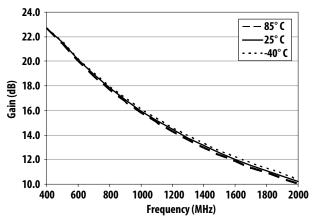


Figure 18. Gain vs Frequency vs Temperature

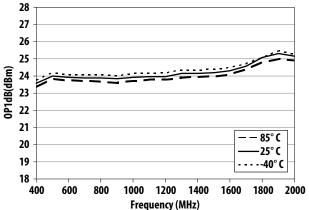


Figure 20. OP1dB vs Frequency vs Temperature

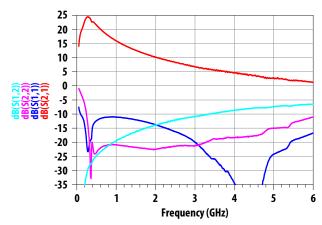


Figure 21. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs Frequency

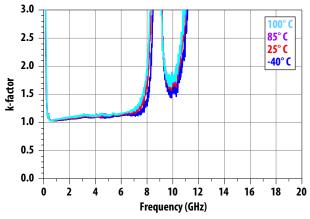


Figure 22. k-factor vs Frequency vs Temperature

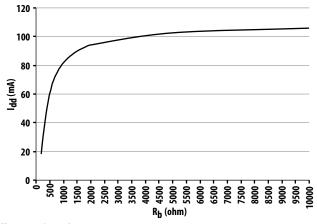
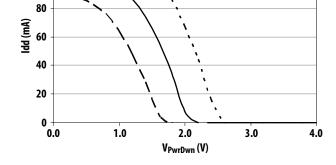



Figure 23. I_{dd} vs R_b

— — 85° C ——25° C -----40° C

Figure 24. I_{dd} vs V_{PwrDwn}

120

100

Typical Scattering Parameters, Vdd = 4.8 V, Idd = 108 mA

LNA SPAR (100 MHz – 20 GHz)

Freq (GHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
				-		-		
0.1	-3.611	-62.842	30.561	136.999	-34.551	62.629	-15.454	-100.227
0.5	-10.75	-141.835	21.562	98.647	-25.1	65.794	-21.768	173.774
0.7	-11.393	-159.056	19.067	89.008	-22.486	65.115	-23.274	176.757
0.9	-11.693	-171.846	17.088	81.239	-20.477	63.144	-23.435	-175.622
1.0	-12.003	-176.697	16.247	77.798	-19.607	61.903	-24.023	-169.048
1.5	-12.658	161.534	12.916	62.727	-16.314	54.394	-22.335	-157.583
1.7	-12.53	154.197	11.855	57.342	-15.332	51.078	-20.648	-161.025
1.9	-12.404	147.907	10.906	52.163	-14.463	47.752	-19.362	-164.643
2.0	-12.379	145.023	10.472	49.657	-14.065	46.022	-18.873	-166.072
2.5	-12.524	132.944	8.569	37.635	-12.364	37.489	-17.143	-171.539
3	-13.356	123.107	7.083	26.504	-10.943	28.854	-15.991	-174.201
3.5	-14.336	114.678	5.844	15.468	-9.794	19.876	-15.602	-179.46
4	-15.464	103.233	4.756	5.444	-8.846	11.572	-14.891	177.251
4.5	-16.075	89.916	3.908	-5.273	-7.978	2.026	-13.836	161.01
5	-15.98	79.553	3.084	-15.148	-7.323	-6.929	-12.579	146.587
5.5	-15.742	62.755	2.344	-25.098	-6.757	-16.231	-11.308	133.363
6	-15.688	50.395	1.686	-34.558	-6.287	-25.298	-10.288	121.972
7	-17.293	40.867	0.539	-52.328	-5.474	-42.892	-9.2	104.475
8	-23.851	68.823	-0.256	-69.296	-4.831	-60.283	-9.074	95.197
9	-19.948	145.615	-1.09	-85.871	-4.478	-77.706	-9.337	88.367
10	-15.337	144.42	-1.671	-102.123	-4.108	-95.651	-8.526	78.112
11	-14.047	129.044	-2.544	-120.208	-4.249	-115.535	-7.598	48.997
12	-12.433	104.57	-3.529	-135.218	-4.696	-132.217	-6.371	28.359
13	-9.432	93.835	-4.488	-151.951	-5.197	-150.835	-4.998	26.293
14	-6.416	81.489	-5.847	-162.095	-6.312	-163.011	-5.407	16.024
15	-5.585	68.225	-5.445	-168.582	-5.676	-170.476	-8.272	15.731
16	-5.651	57.754	-5.184	172.519	-5.19	168.847	-6.291	6.112
17	-4.91	46.32	-6.704	156.563	-6.646	151.286	-4.337	-20.813
18	-4.432	34.876	-7.895	144.747	-7.778	138.297	-3.486	-31.185
19	-3.638	18.869	-8.76	131.758	-8.607	124.14	-2.747	-26.804
20	-3.147	2.127	-8.894	121.339	-8.745	112.553	-2.767	-18.826

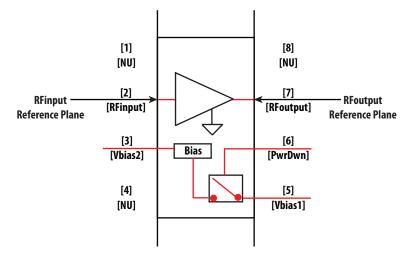
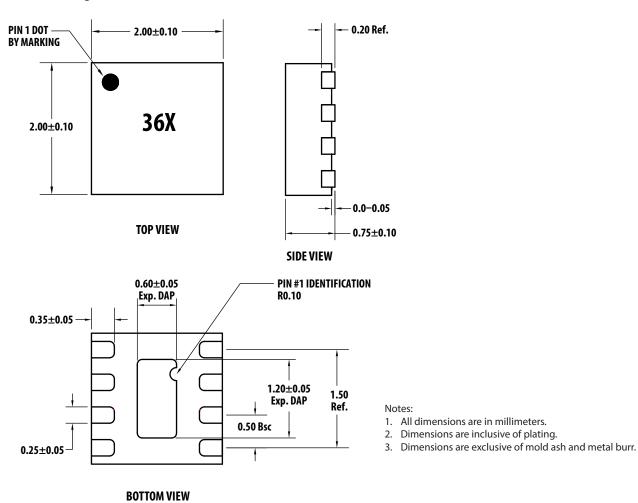


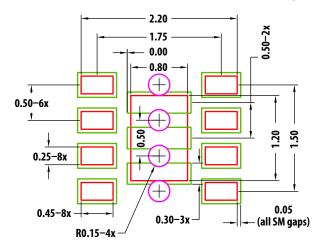
Figure 25. RFinput and RFoutput Reference Plane

Typical Noise Parameters, Vdd = 4.8 V, Idd = 108 mA

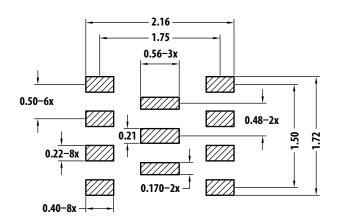

Freq GHz	Fmin dB	Γ_{opt} Mag.	Γ_{opt} Ang.	R _{n/50}
0.5	0.472	0.078	-31.8	0.038
0.7	0.432	0.080	11.5	0.037
0.8	0.379	0.081	33.2	0.037
0.9	0.386	0.082	54.8	0.038
1.7	0.5	0.092	228	0.043
1.9	0.582	0.094	271	0.043

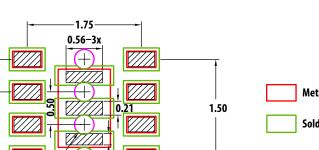
Notes:

1. The Fmin values are based on noise figure measurements at 100 different impedances using Focus source pull test system. From these measurements a true Fmin is calculated.


2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 25.

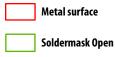
DFN2X2 Package Dimensions




Part Number Ordering Information

Part Number	No. of Devices	Container	
MGA-636P8-BLKG	100	Antistatic Bag	
MGA-636P8-TR1G	3000	7 inch Reel	

Recommended PCB Land Pattern and Stencil Design



ł

0.50-6x

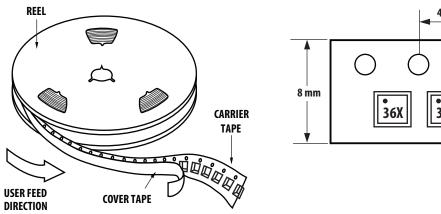
Ŧ

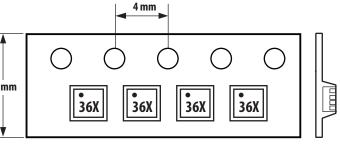
Stencil Design

Combines PCB & Stencil Design

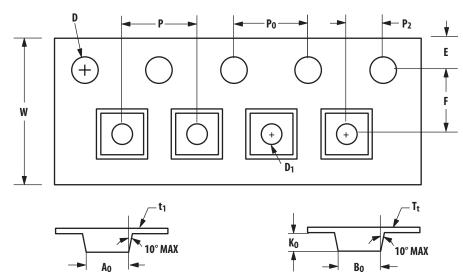
All Dimension are in millimeters

Notes:

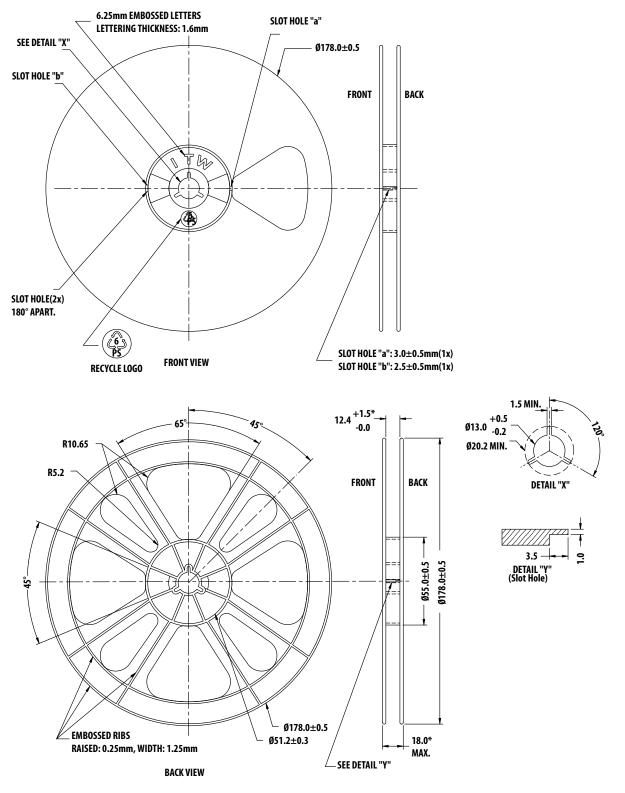

1. Stencil thickness is 0.1 mm (4 mils).


R0.15-4x

2. All dimensions are in mm unless otherwise specified.


0.17-2x

Device Orientation



Tape Dimensions

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH	A ₀	$\textbf{2.30} \pm \textbf{0.05}$	0.091 ± 0.004
	WIDTH	B ₀	2.30 ± 0.05	0.091 ± 0.004
	DEPTH	K ₀	1.00 ± 0.05	0.039 ± 0.002
	PITCH	P	4.00 ± 0.10	0.157 ± 0.004
	BOTTOM HOLE DIAMETER	D ₁	1.00 + 0.25	0.039 + 0.002
PERFORATION	DIAMETER	D	1.50 ± 0.10	0.060 ± 0.004
	PITCH	Po	4.00 ± 0.10	0.157 ± 0.004
	POSITION	E	1.75 ± 0.10	0.069 ± 0.004
CARRIER TAPE	WIDTH	W	8.00 ± 0.30	0.315 ± 0.012
			8.00 ± 0.10	0.315 ± 0.004
	THICKNESS	t ₁	0.254 ± 0.02	0.010 ± 0.0008
COVER TAPE	WIDTH	C	5.4 ± 0.10	0.205 ± 0.004
	TAPE THICKNESS	Tt	$\textbf{0.062} \pm \textbf{0.001}$	0.0025 ± 0.0004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION)	F	$\textbf{3.50} \pm \textbf{0.05}$	0.138±0.002
	CAVITY TO PERFORATION (LENGTH DIRECTION)	P ₂	$\textbf{2.00} \pm \textbf{0.05}$	0.079 ± 0.002

Reel Dimensions – 7 inch

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved. AV02-2991EN - July 8, 2014

