imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

reescale Semiconductor

Technical Data

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

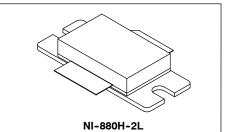
RF power transistor suitable for industrial heating applications operating at 2450 MHz. Device is capable of both CW and pulse operation.

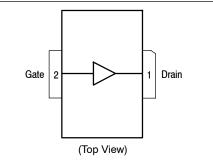
• Typical CW Performance at 2450 MHz, V_{DD} = 28 Vdc, I_{DQ} = 1200 mA, P_{out} = 140 W

Power Gain — 13.2 dB Drain Efficiency — 45%

 Capable of Handling 10:1 VSWR, @ 28 Vdc, 2390 MHz, 140 W CW Output Power

Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Qualified up to a Maximum of 32 V_{DD} Operation
- Integrated ESD Protection
- In Tape and Reel. R5 Suffix = 50 Units per 56 mm Tape Width, 13-inch Reel.


Document Number: MHT1000H Rev. 0, 5/2014

RoHS

MHT1000HR5

2450 MHz, 140 W CW, 28 V INDUSTRIAL HEATING, RUGGED RF POWER LDMOS TRANSISTOR

Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +12	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit	
Thermal Resistance, Junction to Case Case Temperature 82°C, 140 W CW	$R_{\theta JC}$	0.29	°C/W	

1. Continuous use at maximum temperature will affect MTTF.

 MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class				
Human Body Model (per JESD22-A114)	1C				
Machine Model (per EIA/JESD22-A115)				Ą	
Charge Device Model (per JESD22-C101)			I	II	
Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise n	oted)				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 68 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	—	_	10	μAdo
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	—	_	1	μAdo
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		_	500	nAdo
On Characteristics				•	
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 300 μ Adc)	V _{GS(th)}	1	2	3	Vdc
Gate Quiescent Voltage (V_{DD} = 28 Vdc, I_D = 1300 mAdc, Measured in Functional Test)	V _{GS(Q)}	2	2.8	4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3 Adc)	V _{DS(on)}	0.1	0.21	0.3	Vdc
Dynamic Characteristics ⁽¹⁾			•		
Reverse Transfer Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	2		pF

Functional lests (In Freescale lest Fitxture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 1300 \text{ mA}$, $P_{out} = 28 \text{ W Avg.}$, t = 2390 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Bandwidth @ ±10 MHz Offset. Input Signal PAR = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	13	15.2	17	dB
Drain Efficiency	ηD	23	25	—	%
Intermodulation Distortion	IM3	_	-37	-35	dBc
Adjacent Channel Power Ratio	ACPR	_	-40	-38	dBc
Input Return Loss	IRL		-15	—	dB

1. Part internally matched both on input and output.

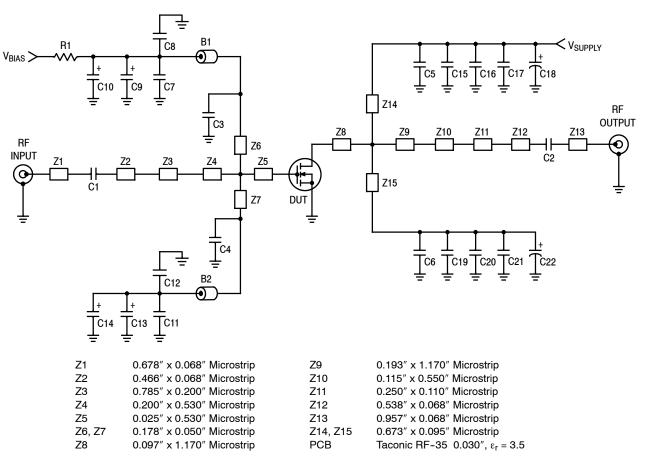
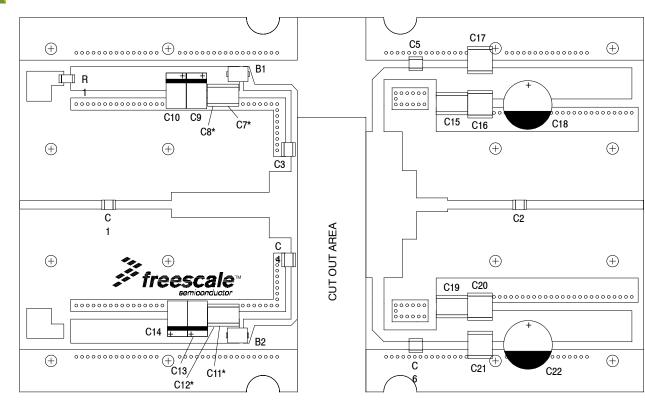
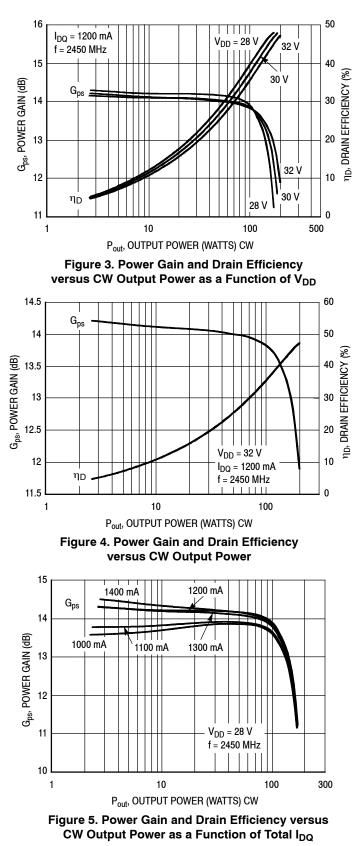



Figure 1. MHT1000HR5 Test Circuit Schematic — 2450 MHz

Table 5. MHT1000HR5 Test Circuit Con	ponent Designations and Values
--------------------------------------	--------------------------------

Part	Description	Part Number	Manufacturer	
B1, B2	47 Ω, 100 MHz Short Ferrite Beads, Surface Mount	2743019447	Fair-Rite	
C1, C2, C3, C4, C5, C6	5.6 pF Chip Capacitors	ATC600B5R6BT500XT	ATC	
C7, C11	0.01 μF, 100 V Chip Capacitors	C1825C103J1RAC	Kemet	
C8, C12, C15, C19	2.2 μF, 50 V Chip Capacitors	C1825C225J5RAC	Kemet	
C9, C13	22 μF, 25 V Tantalum Capacitors	T491D226M025AT	Kemet	
C10, C14	47 μF, 16 V Tantalum Capacitors T491D476K016AT Ke		Kemet	
C16, C17, C20, C21	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88B	Murata	
C18, C22	220 µF, 50 V Electrolytic Capacitors	2222-150-95102	Vishay	
R1	240 Ω, 1/4 W Chip Resistor	CRC12062400FKEA	Vishay	



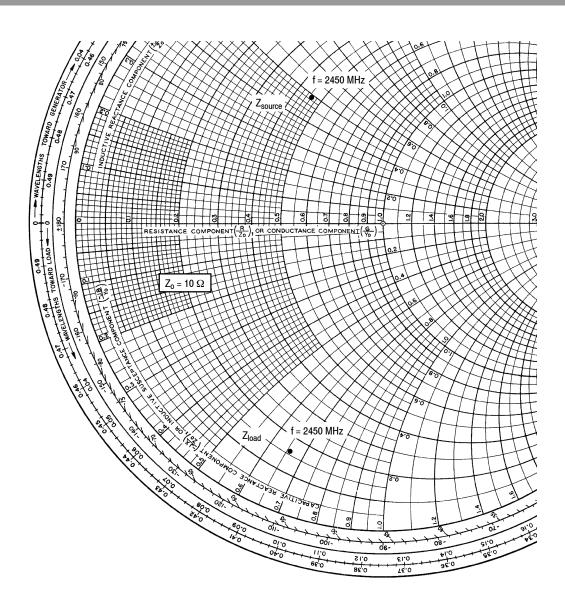

* Stacked

Figure 2. MHT1000HR5 Test Circuit Component Layout

TYPICAL CHARACTERISTICS — 2450 MHz

 V_{DD} = 28 Vdc, I_{DQ} = 1200 mA, P_{out} = 140 W CW

f	Z _{source}	Z _{load}
MHz	Ω	Ω
2450	4.55 + j4.9	1.64 - j6.57

- Z_{source} = Test circuit impedance as measured from gate to ground.
- Z_{load} = Test circuit impedance as measured from drain to ground.

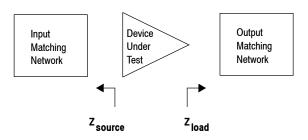
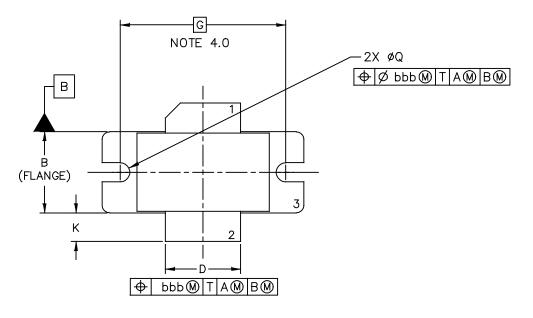
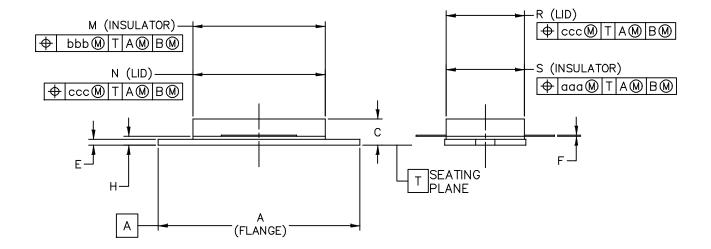




Figure 6. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ARB18493C	REV: F
NI-880		CASE NUMBER	26 MAY 2011	
		STANDARD: NO	N-JEDEC	

NOTES:

- 1.0 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2.0 CONTROLLING DIMENSION: INCH.
- 3.0 DIMENSION H IS MEASURED .030 (0.762) AWAY FROM PACKAGE BODY.
- 4.0 RECOMMENDED BOLT CENTER DIMENSION OF 1.16 (29.57) BASED ON M3 SCREW.

	IN	СН	MIL	LIMETER			INCH		М	ILLIME	TER
DIM	MIN	MAX	MIN	MAX	DIM	MIN		MAX	MIN		MAX
А	1.335	1.345	33.91	34.16	R	.515	_	.525	13.0	8 —	13.34
В	.535	.545	13.59	13.84	S	.515	_	.525	13.0	B —	13.34
С	.147	.200	3.73	5.08	aaa	_	.007	_	—	0.178	3 —
D	.495	.505	12.57	12.83	bbb	_	.010	_	—	0.25	4 —
E	.035	.045	0.89	1.14	ccc	-	.015	_	_	0.38	1 —
F	.003	.006	0.08	0.15	—	_	_	_	—	_	_
G	1.100	BSC	27	'.94 BSC	—	_	_	_	—	_	_
Н	.057	.067	1.45	1.70	—	_	_	_	_	_	_
K	.175	.205	4.45	5.21	—	_	_	_	—	_	_
М	.872	.888	22.15	22.56	—	_	_	_	—	_	_
N	.871	.889	22.12	22.58	—	_	_	_	—	_	_
Q	ø.118	ø.138	ø3.00	ø3.51	—	_	-	_	_	_	_
							-				
© I	FREESCALE SEN ALL RIGHT	ICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	Pf	RINT VERS	SION NO	т то	SCALE
TITLE:	TITLE:				DOCU	MENT NO): 98A	RB18493	С	REV:	F
		NI-88	0		CASE	NUMBER	R: 465	B-04		26	MAY 11
					STAN	DARD: N	DN—JE	EDEC			

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- **Engineering Bulletins**
- EB212: Using Data Sheet Impedances for RF LDMOS Devices
- Software
- Electromigration MTTF Calculator

For Software, do a Part Number search at <u>http://www.freescale.com</u>, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2014	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

