

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

. reescale Semiconductor Technical Data

Gallium Arsenide CATV Amplifier Module

Features

- Specified for 79-, 112- and 132-Channel Loading
- **Excellent Distortion Performance**
- Built-in Input Diode Protection
- GaAs FET Transistor Technology
- Unconditionally Stable Under All Load Conditions

Applications

- CATV Systems Operating in the 47 to 870 MHz Frequency Range
- Input Stage Amplifier in Optical Nodes, Line Extenders and Trunk Distribution Amplifiers for CATV Systems
- Output Stage Amplifier on Applications Requiring Low Power Dissipation and High Output Performance
- Driver Amplifier in Linear General Purpose Applications


- 24 Vdc Supply, 47 to 870 MHz, CATV GaAs Forward Amplifier Module
- Replaced MHW9206. There are no form, fit or function changes with this part replacement.
- **RoHS Compliant**

Document Number: MHW9206N

Rev. 4, 3/2006

MHW9206N

870 MHz **20.2 dB GAIN** 132-CHANNEL **GaAs CATV AMPLIFIER MODULE**

CASE 1302-01, STYLE 1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	V _{in}	+70	dBmV
DC Supply Voltage	V _{CC}	+26	Vdc
Operating Case Temperature Range	T _C	-20 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +100	°C

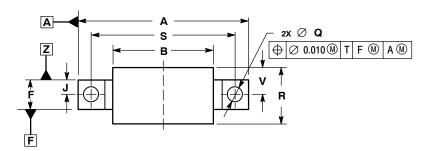
Table 2. ESD Maximum Ratings

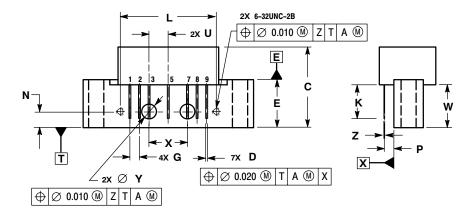
Rating	Input Value	Output Value	Unit
Surge Voltage per IEC 1000-4-5	300	300	V
Human Body Model per Mil. Std. 1686	2	2	kV

Table 3. Electrical Characteristics (V_{CC} = 24 Vdc, T_{C} = +45°C, 75 Ω system unless otherwise noted)

Characteri	Symbol	Min	Тур	Max	Unit	
Frequency Range		BW	47	_	870	MHz
Power Gain	870 MHz	G _p	19.6	20.2	20.8	dB
Slope 47-870 MHz		S	0.4	0.8	1.4	dB
Gain Flatness (47-870 MHz, Peak-to-V	G _F	_	_	0.5	dB	
Return Loss — Input/Output	IRL/ORL				dB	
(Z _o = 75 Ohms)	47-500 MHz		20	_	_	
	501 - 750 MHz		19	_	_	
	751-870 MHz		18	_	_	
Composite Second Order					dBc	
(V _{out} = +48 dBmV/ch., Worst Case) 79-Channel FLAT		CSO ₇₉	_	-66	-63	
(V _{out} = +46 dBmV/ch., Worst Case) 112-Channel FLAT		CSO ₁₁₂	_	-62	-59	
(V _{out} = +44 dBmV/ch., Worst Case) 132-Channel FLAT		CSO ₁₃₂	_	-63	-59	

Table 3. Electrical Characteristics (V_{CC} = 24 Vdc, T_{C} = +45°C, 75 Ω system unless otherwise noted) (continued)


Characteristic		Symbol	Min	Тур	Max	Unit
Cross Modulation Distortion @ Ch 2						dBc
(V _{out} = +48 dBmV/ch., FM = 55.25 MHz)	79-Channel FLAT	XMD ₇₉	_	-55	-51	
(V _{out} = +46 dBmV/ch., FM = 55.25 MHz)	112-Channel FLAT	XMD ₁₁₂	_	-55	-51	
$(V_{out} = +44 \text{ dBmV/ch.}, FM = 55.25 \text{ MHz})$	132-Channel FLAT	XMD ₁₃₂	_	-57	-51	
Composite Triple Beat						dBc
(V _{out} = +48 dBmV/ch., Worst Case)	79-Channel FLAT	CTB ₇₉	_	-62	-60	
(V _{out} = +46 dBmV/ch., Worst Case)	112-Channel FLAT	CTB ₁₁₂	_	-60	-57	
(V _{out} = +44 dBmV/ch., Worst Case)	132-Channel FLAT	CTB ₁₃₂	_	-60	-57	
Noise Figure	50 MHz	NF	_	3.8	4.5	dB
	870 MHz		_	4	4.5	
DC Current (V _{DC} = 24 V, T _C = 45°C)		I _{DC}	230	245	260	mA


ARCHIVE INFORMATION

ARCHIVE INFORMATION

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONS ARE IN INCHES.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	-	1.775		45.085		
В	-	1.085		27.559		
С	-	0.840		21.336		
D	0.015	0.021	0.381	0.533		
Е	0.465	0.510	11.811	12.954		
F	0.300	0.325	7.62	8.255		
G	0.100 BSC		2.540 BSC			
J	0.156 BSC		3.962 BSC			
K	0.315	0.355	8.001	9.017		
L	1.000 BSC		25.400 BSC			
N	0.165 BSC		4.191 BSC			
P	0.100 BSC		2.540 BSC			
Q	0.148	0.168	3.759	4.267		
R		0.600		15.24		
S	1.500 BSC		38.100 BSC			
U	0.200 BSC		5.080 BSC			
٧		0.250		6.350		
W	0.435		11.049			
Х	0.400 BSC		10.160 BSC			
Υ	0.152	0.163	3.861	4.140		
Z	0.009	0.011	0.229	0.279		

- STYLE 1:
 PIN 1. RF INPUT
 2. GROUND
 3. GROUND
 4. DELETED
 5. VDC
 6. DELETED
 7. GROUND
 8. GROUND
 9. RF OUTPUT

CASE 1302-01 ISSUE E

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006, 2008. All rights reserved.

Document Number: MHW9206N Rev. 4, 3/2006