: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MIC2287

inlcinelt

1.2MHz PWM White LED Driver with OVP in $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF $^{\text {TM }}$ and Thin SOT-23

General Description

The MIC2287 is a 1.2 MHz pulse width modulated (PWM), boost-switching regulator that is optimized for constantcurrent, white LED driver applications. With a maximum output voltage of 34 V and a switch current of over 500 mA , the MIC2287 easily drives a string of up to 8 white LEDs in series, ensuring uniform brightness and eliminating several ballast resistors.
The MIC2287 implements a constant frequency, 1.2 MHz PWM control scheme. The high frequency PWM operation saves board space by reducing external component sizes. The added benefit of the constant frequency PWM scheme as opposed to variable frequency topologies is much lower noise and input ripple injected back to the battery source.
To optimize efficiency, the feedback voltage is set to only 95 mV . This reduces the power dissipation in the current set resistor and allows the lowest total output voltage, hence minimal current draw from the battery.
The MIC2287 is available with 3 levels of overvoltage protection, $15 \mathrm{~V}, 24 \mathrm{~V}$, and 34 V . This allows designers to choose the smallest possible external components with the appropriate voltage ratings for their applications.
The MIC2287 is available in low profile Thin SOT-235-lead and an 8 -lead $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF $^{\text {TM }}$ package options. The MIC2287 has a junction temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
All support documentation can be found on Micrel's web site at www.micrel.com.

Features

- 2.5 V to 10 V input voltage
- Output voltage up to 34 V
- Over 500 mA switch current
- 1.2 MHz PWM operation
- 95 mV feedback voltage
- Output Overvoltage Protection (OVP)
- Options for 15 V , 24 V , and 34 V OVP
- <1\% line and load regulation
- <1 $\mu \mathrm{A}$ shutdown current
- Over-temperature protection
- UVLO
- Low profile Thin SOT-23-5 package option
- 8-lead $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF ${ }^{\text {TM }}$ package option
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- White LED driver for backlighting:
- Cell phones
- PDAs
- GPS systems
- Digital cameras
- MP3 players
- IP phones
- Photo flash LED driver
- LED flashlights
- Constant current power supplies

Typical Application

3-Series White LED Driver in Thin SOT-23

6-Series White LED Driver with Output OVP in $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF $^{\text {TM }}-8$

MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.
Micrel, Inc. • 2180 Fortune Drive •San Jose, CA 95131•USA• tel + 1 (408) 944-0800•fax + 1 (408) 474-1000•http://www.micrel.com

Ordering Information

Part Number	Marking Code	Overvoltage Protection	Junction Temp. Range	Package	Lead Finish
MIC2287BD5	SGAA	N/A	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Thin SOT-23-5	Standard
MIC2287YD5	SGAA	N/A	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Thin SOT-23-5	Lead Free
MIC2287-15BML	SLA	15 V	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF $^{\text {TM }}$	Standard
MIC2287-15YML	SLA	15 V	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {TM }}$	Lead Free
MIC2287-24BML	SLB	24 V	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {TM }}$	Standard
MIC2287-24YML	SLB	24 V	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {TM }}$	Lead Free
MIC2287-34BML	SLC	34 V	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {TM }}$	Standard
MIC2287-34YML	SLC	34 V	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}^{\text {TM }}$	Lead Free

Pin Configuration

TSOT-23-5 (BD5)

8-Pin MLF ${ }^{\text {TM }}$ (BML)
(Top View)
Fused Lead Frame

Pin Description

Pin Number TSOT-23-5	Pin Number $\mathbf{2 m m} \times \mathbf{2 m m}$ MLF $^{\text {TM }}$	Pin Name	Pin Function
1	7	SW	Switch node (Input): Internal power BIPOLAR collector.
2		GND	Ground (Return): Ground.
3	6	FB	Feedback (Input): Output voltage sense node. Connect the cathode of the LED to this pin. A resistor from this pin to ground sets the LED current.
4	3	EN	Enable (Input): Logic high enables regulator. Logic low shuts down regula- tor.
5	2	VIN	Supply (Input): 2.5V to 10V for internal circuitry.
-	1	OVP	Overvoltage protection (Input): Connect to the output.
-	4	AGND	Analog ground.
-	8	NGND	Power ground.
-	EP	No connect (no internal connection to die).	
-		GND	Ground (Return): Exposed backside pad.

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{IN}) 12V
Switch Voltage $\left(\mathrm{V}_{\mathrm{SW}}\right)$ \qquad
Enable Pin Voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)$.................................. -0.3 to V_{IN}
FB Voltage (V_{FB}) . 6 V
Switch Current (ISW)... 2A
Ambient Storage Temperature $\left(\mathrm{T}_{\mathrm{S}}\right) \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating ${ }^{(3)}$ 2 kV

Operating Ratings ${ }^{(2)}$

Supply Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$.. 2.5 V to 10 V
Junction Temperature Range $\left(T_{j}\right) \ldots ~-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package Thermal Impedance
$2 \mathrm{~mm} \times 2 \mathrm{mmMLF}^{\text {TM }}\left(\theta_{\mathrm{JA}}\right) \ldots . ~ 93^{\circ} \mathrm{C} / \mathrm{W}$
Thin SOT-23-5 ($\theta_{\text {JA }}$) .. $256^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(4)}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$, unless otherwise noted. Bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range		2.5		10	V
$\mathrm{V}_{\text {UVLO }}$	Under Voltage Lockout		1.8	2.1	2.4	V
$\mathrm{V}_{\mathrm{VIN}}$	Quiescent Current	$\mathrm{V}_{\mathrm{FB}}>200 \mathrm{mV}$, (not switching)		2.5	5	mA
$\mathrm{I}_{\text {SD }}$	Shutdown Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}^{(5)}$		0.1	1	$\mu \mathrm{A}$
V_{FB}	Feedback Voltage	($\pm 5 \%$)	90	95	100	mV
$\mathrm{I}_{\text {FB }}$	Feedback Input Current	$\mathrm{V}_{\mathrm{FB}}=95 \mathrm{mV}$		-450		nA
	Line Regulation ${ }^{(6)}$	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V}$		0.5	1	\%
	Load Regulation ${ }^{(6)}$	$5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 20 \mathrm{~mA}$		0.5	2	\%
$\overline{\mathrm{D}}$ MAX	Maximum Duty Cycle		85	90		\%
$\mathrm{I}_{\text {SW }}$	Switch Current Limit			750		mA
$\mathrm{V}_{\text {SW }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$		450		mV
$\mathrm{I}_{\text {SW }}$	Switch Leakage Current	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=10 \mathrm{~V}$		0.01	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {EN }}$	Enable Threshold	TURN ON TURN OFF	1.5		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{EN}	Enable Pin Current	$\mathrm{V}_{\text {EN }}=10 \mathrm{~V}$		20	40	$\mu \mathrm{A}$
$\mathrm{f}_{\text {SW }}$	Oscillator Frequency		1.05	1.2	1.35	MHz
$\mathrm{V}_{\text {OVP }}$	Overvoltage Protection	MIC2287BML- 15 only MIC2287BML- 24 only MIC2287BML- 34 only	$\begin{aligned} & 13 \\ & 21 \\ & 30 \end{aligned}$	$\begin{gathered} 14 \\ 22.5 \\ 32 \end{gathered}$	$\begin{aligned} & 16 \\ & 24 \\ & 34 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
T_{J}	Overtemperature Threshold Shutdown	Hysteresis		$\begin{gathered} 150 \\ 10 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

Notes:

1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, $\mathrm{T}_{\mathrm{J}}(\mathrm{max})$, the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_{A}. The maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
2. This device is not guaranteed to operate beyond its specified operating ratings.
3. Devices are inherently ESD sensitive. Handling precautions required. Human body model.
4. Specification for packaged product only.
5. $I_{S D}=I_{V I N}$.
6. Guaranteed by design.

Typical Characteristics

EN Pin Bias Currency

Saturation Voltage

Functional Diagram

MIC2287 Block Diagram

Functional Description

The MIC2287 is a constant frequency, PWM current mode boost regulator. The block diagram is shown above. The MIC2287 is composed of an oscillator, slope compensation ramp generator, current amplifier, g_{m} error amplifier, PWM generator, and a 500 mA bipolar output transistor. The oscillator generates a 1.2 MHz clock. The clock's two functions are to trigger the PWM generator that turns on the output transistor and to reset the slope compensation ramp generator. The current amplifier is used to measure the switch current by amplifying the voltage signal from the internal sense resistor. The output of the current amplifier is summed with the output of the slope compensation ramp generator. This summed current-loop signal is fed to one of the inputs of the PWM generator.

The g_{m} error amplifier measures the LED current through the external sense resistor and amplifies the error between the detected signal and the 95 mV reference voltage. The output of the g_{m} error amplifier provides the voltage-loop signal that is fed to the other input of the PWM generator. When the current-loop signal exceeds the voltage-loop signal, the PWM generator turns off the bipolar output transistor. The next clock period initiates the next switching cycle, maintaining the constant frequency current-mode PWM control. The LED is set by the feedback resistor:

$$
\mathrm{I}_{\mathrm{LED}}=\frac{95 \mathrm{mv}}{\mathrm{R}_{\mathrm{FB}}}
$$

The Enable pin shuts down the output switching and disables control circuitry to reduce input current-to-leakage levels. Enable pin input current is zero at zero volts.

External Component Selection

The MIC2287 can be used across a wide rage of applications.

The table below shows recommended inductor and output capacitor values for various series-LED applications.

Series LEDs	L	Manufacturer	Min $\mathrm{C}_{\text {OUT }}$	Manufacturer
2	$22 \mu \mathrm{H}$	LQH32CN220K21 (Murata) NLC453232T-220K(TDK)	$2.2 \mu \mathrm{~F}$	0805ZD225KAT(AVX) GRM40X5R225K10(Murata)
	$15 \mu \mathrm{H}$	LQH32CN150K21 (Murata) NLC453232T-150K(TDK)	$1 \mu \mathrm{~F}$	0805ZD105KAT(AVX) GRM40X5R105K10(Murata)
	$10 \mu \mathrm{H}$	LQH32CN100K21 (Murata) NLC453232T-100K(TDK)	$0.22 \mu \mathrm{~F}$	
	$6.8 \mu \mathrm{H}$	LQH32CN6R8K21 (Murata) NLC453232T-6R8K(TDK)	$0.22 \mu \mathrm{~F}$	$\begin{gathered} \text { 0805ZD225KAT(AVX) } \\ \text { GRM40X5R225K10(Murata) } \end{gathered}$
	$4.7 \mu \mathrm{H}$	LQH32CN4R7K21 (Murata) NLC453232T-4R7K(TDK)	$0.22 \mu \mathrm{~F}$	$\begin{gathered} \text { 0805ZD224KAT(AVX) } \\ \text { GRM40X5R224K10(Murata) } \end{gathered}$
3	$22 \mu \mathrm{H}$	LQH43MN220K21 (Murata) NLC453232T-220K(TDK)	$2.2 \mu \mathrm{~F}$	
	$15 \mu \mathrm{H}$	LQH43MN 150K21 (Murata) NLC453232T-150K(TDK)	$1 \mu \mathrm{~F}$	0805YD105MAT(AVX) GRM40X5R105K16(Murata)
	$10 \mu \mathrm{H}$	LQH43MN 100K21 (Murata) NLC453232T-100K(TDK)	$0.22 \mu \mathrm{~F}$	
	$6.8 \mu \mathrm{H}$	LQH43MN 6R8K21 (Murata) NLC453232T-6R8K(TDK)	$0.22 \mu \mathrm{~F}$	
	$4.7 \mu \mathrm{H}$	LQH43MN 4R7K21 (Murata) NLC453232T-4R7K(TDK)	$0.27 \mu \mathrm{~F}$	$\begin{gathered} \text { 0805YD274MAT(AVX) } \\ \text { GRM40X5R224K16(Murata) } \end{gathered}$
4	$22 \mu \mathrm{H}$	LQH43MN22OK21 (Murata) NLC453232T-220K(TDK)	1 1 F	0805YD105MAT(AVX) GRM40X5R105K25(Murata)
	154H	LQH43MN 150K21 (Murata) NLC453232T-150K(TDK)	14F	0805YD105MAT(AVX) GRM40X5R105K25(Murata)
	$10 \mu \mathrm{H}$	LQH43MN 100K21 (Murata) NLC453232T-100K(TDK)	$0.27 \mu \mathrm{~F}$	0805YD274MAT(AVX) GRM40X5R274K25(Murata)
	$6.8 \mu \mathrm{H}$	LQH43MN 6R8K21 (Murata) NLC453232T-6R8K(TDK)	0.27 F	
	$4.7 \mu \mathrm{H}$	LQH43MN 4R7K21 (Murata) NLC453232T-4R7K(TDK)	0.27 ${ }^{\text {F }}$	0805YD274MAT(AVX) GRM40X5R274K25(Murata)
5,6	$22 \mu \mathrm{H}$	LQH43MN220K21 (Murata) NLC453232T-220K(TDK)	$0.22 \mu \mathrm{~F}$	
	15 $\mu \mathrm{H}$	LQH43MN 150K21 (Murata) NLC453232T-150K(TDK)	$0.22 \mu \mathrm{~F}$	08053D224MAT(AVX) GRM40X5R224K25(Murata)
	$10 \mu \mathrm{H}$	LQH43MN 100K21 (Murata) NLC453232T-100K(TDK)	0.27 F	
	$6.8 \mu \mathrm{H}$	LQH43MN 6R8K21 (Murata) NLC453232T-6R8K(TDK)	0.27 F	08053D274MAT(AVX) GRM40X5R274K25(Murata)
	$4.7 \mu \mathrm{H}$	LQH43MN 4R7K21 (Murata) NLC453232T-4R7K(TDK)	0.27 F	$\begin{gathered} \text { 08053D274MAT(AVX) } \\ \text { GRM40X5R274K25(Murata) } \end{gathered}$
7, 8	$22 \mu \mathrm{H}$	LQH43MN220K21 (Murata) NLC453232T-220K(TDK)	$0.22 \mu \mathrm{~F}$	08053D224MAT(AVX) GRM40X5R224K25(Murata)
	15 H	LQH43MN 150K21 (Murata) NLC453232T-150K(TDK)	$0.22 \mu \mathrm{~F}$	
	10رH	LQH43MN 100K21 (Murata) NLC453232T-100K(TDK)	0.27 ${ }^{\text {F }}$	$\begin{gathered} \text { 08053D274MAT(AVX) } \\ \text { GRM40X5R274K25(Murata) } \end{gathered}$
	$6.8 \mu \mathrm{H}$	LQH43MN 6R8K21 (Murata) NLC453232T-6R8K(TDK)	0.27 F	
	$4.7 \mu \mathrm{H}$	LQH43MN 4R7K21 (Murata) NLC453232T-4R7K(TDK)	0.27 F	$\begin{gathered} \text { 08053D274MAT(AVX) } \\ \text { GRM40X5R274K25(Murata) } \end{gathered}$

Dimming Control

There are two techniques for dimming control. One is PWM dimming, and the other is continuous dimming.

1. PWM dimming control is implemented by applying a PWM signal on EN pin as shown in Figure 1. The MIC2287 is turned on and off by the PWM signal. With this method, the LEDs operate with either zero or full current. The average LED current is increased proportionally to the duty-cycle of the PWM signal. This technique has high-efficiency because the IC and the LEDs consume no current during the off cycle of the PWM signal. Typical PWM frequency should be between 100 Hz and 10 kHz .
2. Continuous dimming control is implemented by applying a DC control voltage to the FB pin of the MIC2287 through a series resistor as shown in Figure 2. The LED intensity (current) can be dynamically varied applying a DC voltage to the FB pin . The DC voltage can come from a DAC signal, or a filtered PWM signal. The advantage of this approach is a high frequency PWM signal ($>10 \mathrm{kHz}$) that can be used to control LED intensity.

Figure 1. PWM Dimming Method

Figure 2. Continuous Dimming

Open-Circuit Protection

If the LEDs are disconnected from the circuit, or in case an LED fails open, the sense resistor will pull the FB pin to ground. This will cause the MIC2287 to switch with a high duty-cycle, resulting in output overvoltage. This may cause the SW pin voltage to exceed its maximum voltage rating, possibly damaging the IC and the external components. To ensure the highest level of protection, the MIC2287 has 3 product options in the 8 -lead $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF $^{\text {TM }}$ with overvoltage protection (OVP). The extra pins of the 8 -lead 2 mm $\times 2 \mathrm{~mm}$ MLF $^{\text {TM }}$ package allow a dedicated OVP monitor with
options for $15 \mathrm{~V}, 24 \mathrm{~V}$, or 34 V (see Figure 3). The reason for the three OVP levels is to let users choose the suitable level of OVP for their application. For example, a 3-LED application would typically see an output voltage of no more than 12 V , so a 15 V OVP option would offer a suitable level of protection. This allows the user to select the output diode and capacitor with the lowest voltage ratings, as well as smallest size and lowest cost. The OVP will clamp the output voltage to within the specified limits. For the Thin SOT-23-5 package, an OVP pin is not available. An external zener diode can be connected from the output of the converter to FB pin as shown in Figure 4. to implement similar protection.

Figure 3. MLF ${ }^{\text {TM }}$ Package OVP Circuit

Figure 4. Thin SOT-23 Package OVP Circuit

Start-Up and Inrush Current

During start-up, inrush current of approximately double the nominal current flows to set up the inductor current and the voltage on the output capacitor. If the inrush current needs to be limited, a soft-start circuit similar to Figure 5 could be implemented. The soft-start capacitor, C_{SS}, provides overdrive to the FB pin at start-up, resulting in gradual increase of switch duty cycle and limited inrush current.

Figure 5. Soft-Start Circuit

6-Series LED Circuit with External Soft-Start

Package Information

Recommended Land Pattern for MLF ${ }^{\text {TM }} \mathbf{2 \times 2} 8$ Lead

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.
© 2004 Micrel, Inc.

