# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



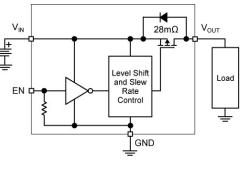


28mΩ R<sub>DSON</sub> 3A High Side Load Switch in 1.2mm x 1.2mm MLF<sup>®</sup> package

### **General Description**

The MIC94040/1/2/3 is a family of high-side load switches designed to operate from 1.7V to 5.5V input voltage. The load switch pass element is an internal  $28m\Omega$  R<sub>DSON</sub> P-channel MOSFET which enables the device to support up to 3A of continuous current. Additionally, the load switch supports 1.5V logic level control and shutdown features in a tiny 1.2mm x 1.2mm 4 pin MLF<sup>®</sup> package.

The MIC94040 and MIC94041 feature rapid turn on, while the MIC94042 and MIC94043 provide a slew rate controlled softstart turn-on of 100 $\mu$ s. The soft-start feature is provided to prevent an in-rush current event from pulling down the input supply voltage.


The MIC94041 and MIC94043 feature an active load discharge circuit which switches in a  $200\Omega$  load when the switch is disabled to automatically discharge a capacitive load.

An active pull-down on the enable input keeps the MIC94040/1/2/3 in a default OFF state until the enable pin is pulled above 1.2V. Internal level shift circuitry allows low voltage logic signals to switch higher supply voltages. The enable voltage can be as high as 5.5V and is not limited by the input voltage.

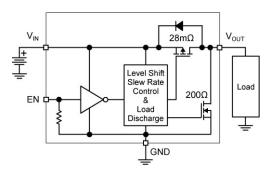
The MIC94040/1/2/3 operating voltage range makes them ideal for Lithium ion and NiMH/NiCad/Alkaline battery powered systems, as well as non-battery powered applications. The devices provide low quiescent current and low shutdown current to maximize battery life.

Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

### **Typical Application**



MIC94040 (ultra fast turn on) MIC94042 (soft-start)


MLF and MicroLeadFrame is a registered trademark of Amkor Technology, Inc.

#### Features

- $28m\Omega R_{DSON}$
- 3A continuous operating current
- 1.2mm x 1.2mm space saving 4-pin MLF<sup>®</sup> package
- 1.7V to 5.5V input voltage range
- Internal level shift for CMOS/TTL control logic
- Ultra low quiescent current
- Micro-power shutdown current
- Soft-Start: MIC94042, MIC94043
- Load discharge circuit: MIC94041, MIC94043
- Ultra fast turn off time
- Junction operating temperature from -40°C to +125°C

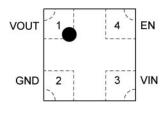
### Applications

- Cellular phones
- Portable Navigation Devices (PND)
- Personal Media Players (PMP)
- Ultra Mobile PCs
- Portable instrumentation
- Other Portable applications
- PDAs
- Industrial and DataComm equipment

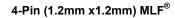


MIC94041 (ultra fast turn on with auto-dsicharge) MIC94043 (soft-start with auto-discharge)

### **Ordering Information**


| Part Number | Part Marking <sup>(1)</sup> | Fast<br>Turn On | Soft-Start | Load<br>Discharge | Package <sup>(2)</sup>                                |
|-------------|-----------------------------|-----------------|------------|-------------------|-------------------------------------------------------|
| MIC94040YFL | —<br>P4                     | •               |            |                   | 4-Pin (1.2mm x 1.2mm) $MLF^{\otimes}$                 |
| MIC94041YFL | —<br>P1                     | •               |            | •                 | 4-Pin (1.2mm x 1.2mm) $MLF^{\ensuremath{\mathbb{R}}}$ |
| MIC94042YFL | —<br>P2                     |                 | •          |                   | 4-Pin (1.2mm x 1.2mm) $MLF^{\ensuremath{\mathbb{R}}}$ |
| MIC94043YFL | —<br>P3                     |                 | •          | •                 | 4-Pin (1.2mm x 1.2mm) $MLF^{\$}$                      |

#### Notes:


1. MLF<sup>®</sup> Pin 1 Identifier symbol is "•".

2. MLF® is a GREEN RoHS-compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free.

### **Pin Configuration**







### **Pin Description**

| Pin Number | Pin Name         | Pin Function                                                                                                                                                    |
|------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | V <sub>OUT</sub> | Drain of P-channel MOSFET.                                                                                                                                      |
| 2          | GND              | Ground should be connected to electrical ground.                                                                                                                |
| 3          | V <sub>IN</sub>  | Source of P-channel MOSFET.                                                                                                                                     |
| 4          | EN               | Enable (Input): Active-high CMOS/TTL control input for switch. Internal $\sim 2M\Omega$ Pull down resistor.<br>Output will be off if this pin is left floating. |

### Absolute Maximum Ratings<sup>(1)</sup>

| Input Voltage (V <sub>IN</sub> )                                         | +6V             |
|--------------------------------------------------------------------------|-----------------|
| Enable Voltage (V <sub>EN</sub> )                                        | +6V             |
| Continuous Drain Current (I <sub>D</sub> ) <sup>(3)</sup>                |                 |
| T <sub>A</sub> = 25°C                                                    | ±3A             |
| T <sub>A</sub> = 85°C                                                    |                 |
| Pulsed Drain Current (I <sub>DP</sub> ) <sup>(4)</sup>                   | ±6.0A           |
| Continuous Diode Current (I <sub>S</sub> ) <sup>(5)</sup>                | –50mA           |
| Storage Temperature (T <sub>s</sub> )                                    | –55°C to +150°C |
| Storage Temperature (T <sub>s</sub> )<br>ESD Rating – HBM <sup>(6)</sup> | 3kV             |

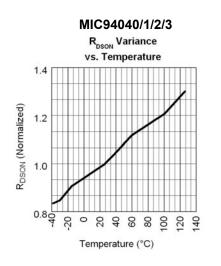
### **Operating Ratings**<sup>(2)</sup>

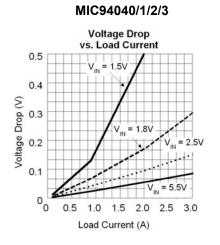
| Input Voltage (V <sub>IN</sub> )       | +1.7 to +5.5V |
|----------------------------------------|---------------|
| Junction Temperature (T <sub>J</sub> ) |               |
| Package Thermal Resistance             |               |
| $MLF^{\mathbb{R}}(\theta_{JC})$        | 90°C/W        |

### **Electrical Characteristics**

| Symbol                      | Parameter                                   | Condition                                                                                | Min | Тур | Max | Units |
|-----------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| $V_{\text{EN}_{\text{TH}}}$ | Enable Threshold Voltage                    | $V_{IN}$ = 1.7V to 4.5V, $I_D$ = -250µA                                                  | 0.4 |     | 1.2 | V     |
| lq                          | Quiescent Current                           | $V_{IN} = V_{EN} = 5.5V$ , $I_D = OPEN$<br>Measured on $V_{IN}$ MIC94040, MIC94041       |     | 0.1 | 1   | μA    |
|                             |                                             | $V_{IN} = V_{EN} = 5.5V$ , $I_D = OPEN$<br>Measured on $V_{IN}$ MIC94042, MIC94043       |     | 7   | 10  |       |
| I <sub>EN</sub>             | Enable Input Current                        | $V_{IN} = V_{EN} = 5.5V, I_D = OPEN$                                                     |     | 2.5 | 4   | μA    |
| I <sub>SHUT-Q</sub>         | Quiescent Current (shutdown)                | $V_{IN}$ = +5.5V, $V_{EN}$ = 0V, $I_D$ = OPEN<br>Measured on $V_{IN}$                    |     | 0.1 | 1   | μA    |
| I <sub>SHUT-SWITCH</sub>    | OFF State Leakage Current                   | $V_{IN}$ = +5.5V, $V_{EN}$ = 0V, $I_D$ = SHORT<br>Measured on $V_{OUT}$ , <sup>(7)</sup> |     | 0.1 | 1   | μA    |
| R <sub>DS(ON)</sub>         | P-Channel Drain to Source ON<br>Resistance  | V <sub>IN</sub> = +5.0V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V                 |     | 28  | 55  | mΩ    |
|                             |                                             | V <sub>IN</sub> = +4.5V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V                 |     | 30  | 60  | mΩ    |
|                             |                                             | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V                 |     | 33  | 65  | mΩ    |
|                             |                                             | V <sub>IN</sub> = +2.5V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V                 |     | 45  | 90  | mΩ    |
|                             |                                             | V <sub>IN</sub> = +1.8V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V                 |     | 72  | 145 | mΩ    |
|                             |                                             | V <sub>IN</sub> = +1.7V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V                 |     | 82  | 160 | mΩ    |
| R <sub>SHUTDOWN</sub>       | Turn-Off Resistance<br>(MIC94041, MIC94043) | V <sub>IN</sub> = +3.6V, I <sub>TEST</sub> = 1mA, V <sub>EN</sub> = 0V                   |     | 250 | 400 | Ω     |

Notes:


- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. With thermal contact to PCB. See thermal considerations section.
- 4. Pulse width  $<300\mu$ s with <2% duty cycle.
- 5. Continuous body diode current conduction (reverse conduction, i.e.  $V_{\text{OUT}}$  to  $V_{\text{IN}}$ ) is not recommended.
- 6. Devices are ESD sensitive. Handling precautions recommended. HBM (Human body model),  $1.5k\Omega$  in series with 100pF.
- 7. Measured on the MIC94040YFL and MIC94042YFL.


### **Electrical Characteristics (Dynamic)**

| $T_{.} = 25^{\circ}C$ | bold values indicate | _/10°C< T. < +85                     | °C unless noted  |
|-----------------------|----------------------|--------------------------------------|------------------|
| $I_A = 200$           | bold values indicate | - <u>+0 0<u>-</u>1<u>A -</u> 105</u> | C, unicos noteu. |

| Symbol                      | Parameter           | Condition                                                                                      | Min | Тур  | Max | Units |
|-----------------------------|---------------------|------------------------------------------------------------------------------------------------|-----|------|-----|-------|
| t <sub>on_dly</sub>         | Turn-On Delay Time  | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V<br>MIC94040, MIC94041 |     | 0.97 | 1.5 | μs    |
|                             |                     | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V<br>MIC94042, MIC94043 | 50  | 106  | 185 | μs    |
| t <sub>on_rise</sub> Ti     | Turn-On Rise Time   | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V<br>MIC94040, MIC94041 | 0.5 | 0.9  | 5   | μs    |
|                             |                     | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 1.5V<br>MIC94042, MIC94043 | 50  | 116  | 200 | μs    |
| $t_{\text{OFF}_\text{DLY}}$ | Turn-Off Delay Time | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 0V                         |     | 100  | 200 | ns    |
| toff_fall                   | Turn-Off Fall Time  | V <sub>IN</sub> = +3.6V, I <sub>D</sub> = -100mA, V <sub>EN</sub> = 0V                         |     | 20   | 100 | ns    |

### **Typical Characteristics**





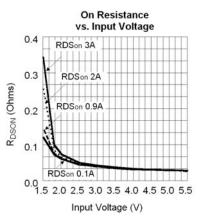
MIC94042/3

Enable Threshold

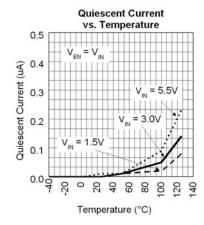
vs. Input Voltage

Venable


(25C)


0.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Input Voltage (V)


Venable

(125C)





#### MIC94040/41



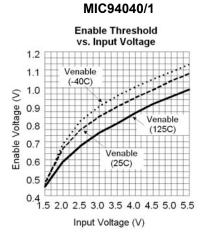
Enable Voltage (V)

1.2

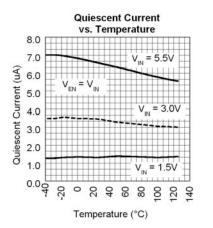
1.1

1.0

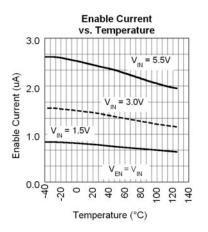
0.9

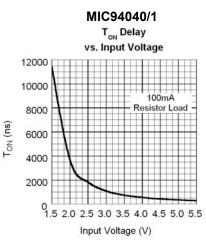

0.8

0.7

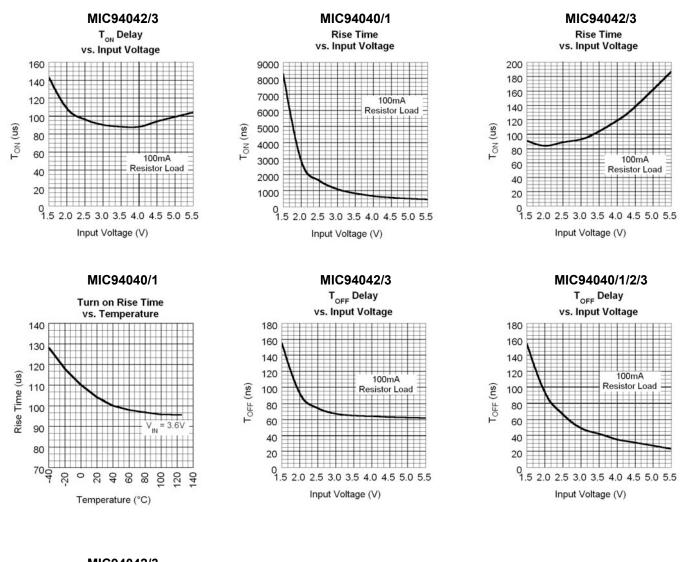

0.6

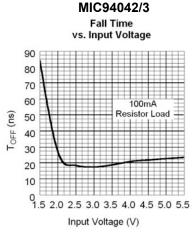
0.5


Venable (-40C)

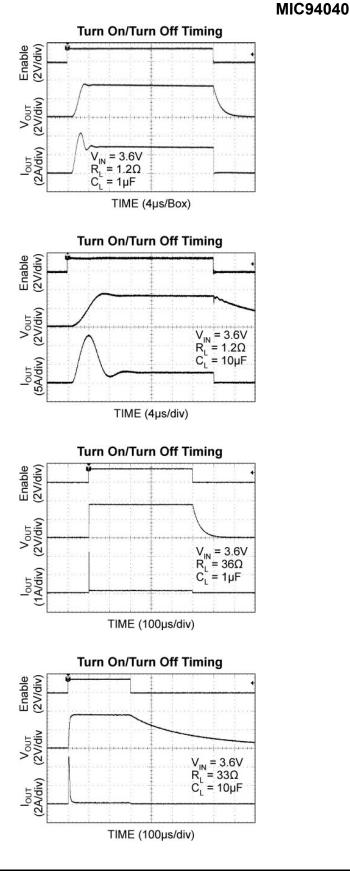


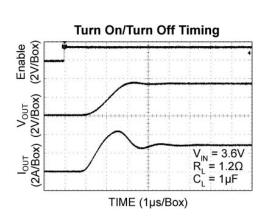

#### MIC94042/3

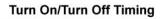


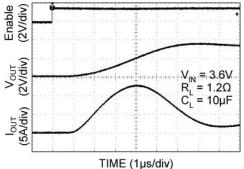


#### MIC94042/3

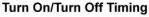


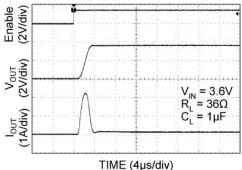


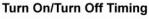


### **Typical Characteristics**

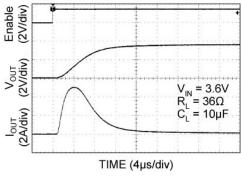


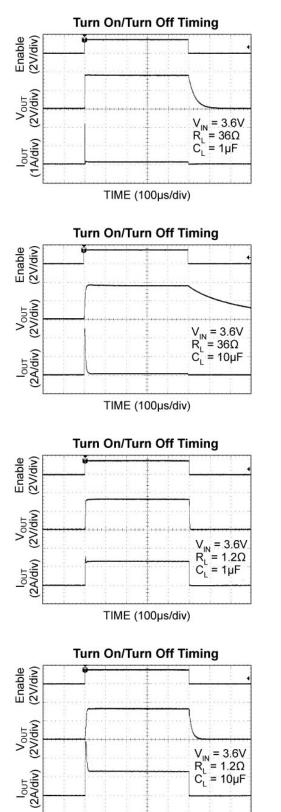





### **Functional Characteristics**



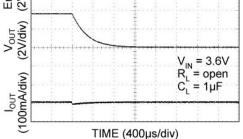



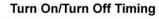



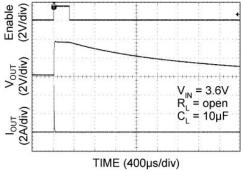




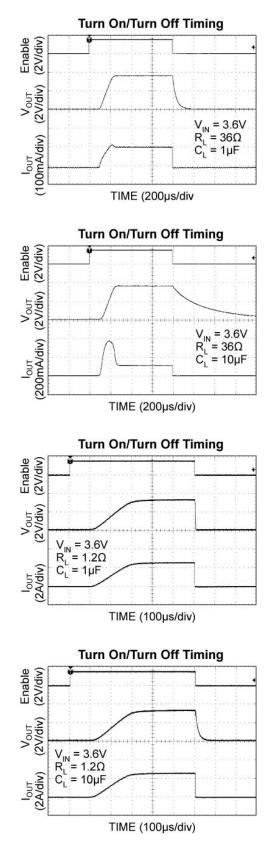


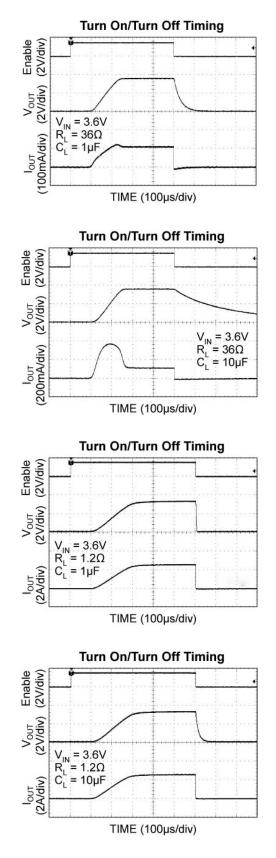


TIME (100µs/div)

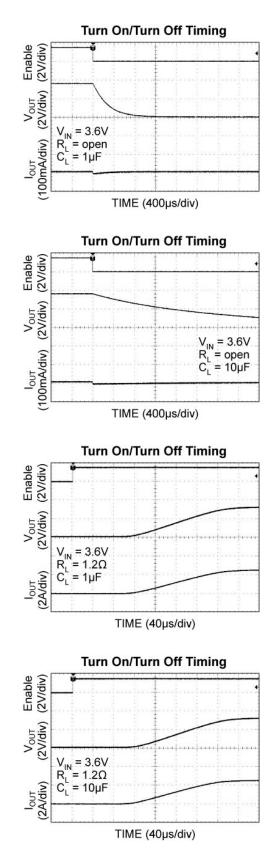
#### MIC94041


Turn On/Turn Off Timing  $V_{IN} = 3.6V$   $R_L = open$   $C_L = 1\mu F$   $C_L = 1\mu F$   $C_L = 1\mu F$   $C_L = 10\mu F$  $TIME (400\mu s/div)$ 









#### MIC94042





#### MIC94043





### **Application Information**

#### **Power Dissipation Considerations**

As with all power switches, the current rating of the switch is limited mostly by the thermal properties of the package and the PCB it is mounted on. There is a simple ohms law type relationship between thermal resistance, power dissipation and temperature, which are analogous to an electrical circuit:

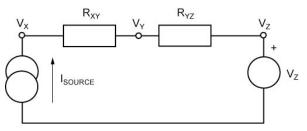



Figure 1. Simple Electrical Circuit

From this simple circuit we can calculate Vx if we know Isource, Vz and the resistor values, Rxy and Ryz using the equation:

 $Vx = Isource \cdot (Rxy + Ryz) + Vz$ 

Thermal circuits can be considered using these same rules and can be drawn similarly by replacing current sources with power dissipation (in Watts), resistance with thermal resistance (in  $^{\circ}C/W$ ) and voltage sources with temperature (in  $^{\circ}C$ ).

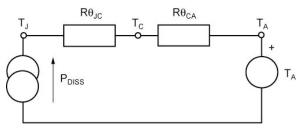
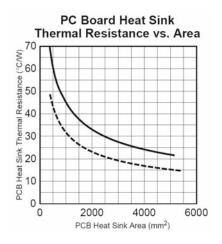



Figure 2. Simple Thermal Circuit

Now replacing the variables in the equation for Vx, we can find the junction temperature  $(T_J)$  from power dissipation, ambient temperature and the known thermal resistance of the PCB ( $R\theta_{CA}$ ) and the package ( $R\theta_{JC}$ ).

$$T_{J} = P_{DISS} x (R\theta_{JC} + R\theta_{CA}) + T_{A}$$

 $P_{DISS}$  is calculated as  $I_{SWITCH}^2 \times R_{SWmax}$ .  $R\theta_{JC}$  is found in the operating ratings section of the datasheet and  $R\theta_{CA}$  (the PCB thermal resistance) values for various PCB copper areas is discussed in the document "Designing with Low Dropout Voltage Regulators" available from the Micrel website (LDO Application Hints).


#### Example:

A switch is intended to drive a 2A load and is placed on a printed circuit board which has a ground plane area of at least 25mm by 25mm ( $625mm^2$ ). The Voltage source is a Li-ion battery with a lower operating threshold of 3V and the ambient temperature of the assembly can be up to 50°C.

Summary of variables:

 $V_{IN} = 3V$  to 4.2V  $T_A = 50^{\circ}C$  $R\theta_{JC} = 90^{\circ}C/W$  from Datasheet

 $R\theta_{CA}$  = 53°C/W Read from Graph in Figure 3



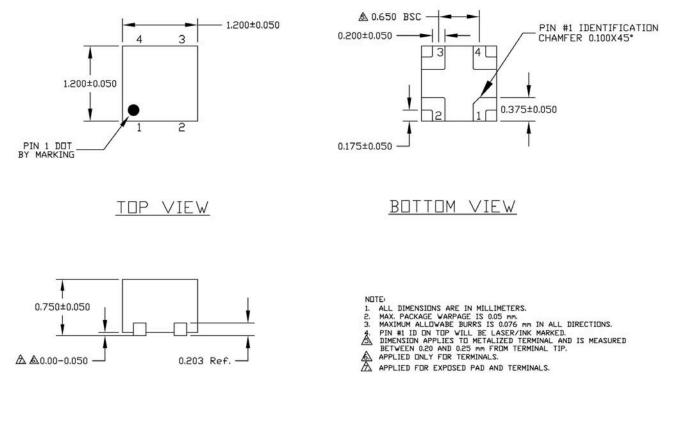
#### Figure 3. Excerpt from the LDO Book

 $P_{DISS} = I_{SW}^2 x R_{SWmax}$ 

The worst case switch resistance ( $R_{SWmax}$ ) at the lowest  $V_{IN}$  of 3V is not available in the datasheet, so the next lower value of  $V_{IN}$  is used.

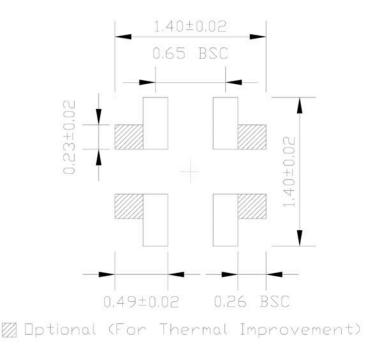
R<sub>SWmax</sub> @ 2.5v = 90mΩ

If this were a figure for worst case  $R_{SWmax}$  for  $25^{\circ}C$ , an additional consideration is to allow for the maximum junction temperature of  $125^{\circ}C$ , the actual worst case resistance in this case can be 30% higher (See  $R_{DSON}$  variance vs. temperature graph). However,  $90m\Omega$  is the maximum over temperature.


Therefore:

 $T_{\rm J} = 2^2 \ge 0.090 \ge (90+53) + 50$ 

$$T_{\rm J} = 101^{\circ}$$


This is below the maximum 125°C.

### **Package Information**



### <u>SIDE VIEW</u>

4-Pin (1.2mm x 1.2mm) MLF<sup>®</sup>



All units are in mm Tolerance ± 0.05 if not noted

Disclaimer: This is only a recommendation based on information available to Micrel from its suppliers. Actual land pattern may have to be significantly different due to various materials and processes used in PCB assembly. Micrel makes no representation or warranty of performance based on the recommended land pattern."

Suggested Landing Pattern for 4 Pin (1.2mm x 1.2mm) MLF®

#### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2008 Micrel, Incorporated.