

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MIC94052/94053

84mΩ P-Channel MOSFET in SC-70-6

General Description

The MIC94052/94053 are low on-resistance, $84m\Omega(max)$ P-channel MOSFETs. They are housed in a *Teeny*TM SC-70-6 package.

Designed for high-side switch applications where space is critical, the MIC94052/3 exhibit a typical on-resistance of $70 m\Omega$ at 4.5V gate-to-source voltage. The devices operate down to 1.8V gate-to-source voltage. Their operating voltage range makes the MIC94052/3 ideal for Li Ion applications as well as other sub-5V load switch applications.

The MIC94053 is an option that includes an internal gate pull-up resistor. The pull-up resistor ensures that the P-channel MOSFET is OFF until actively pulled down. Integrating the pull-up resistor saves valuable board space and reduces component placement cost.

The MIC94052/3 have a junction temperature range of -40° C to $+150^{\circ}$ C.

Features

- 1.8V to 5.5V input voltage range
- Low on-resistance P-channel MOSFET: $70m\Omega$ at V_{GS} = 4.5V (typ) 2A continuous current
- V_{GS} pull-up resistor (MIC94053)
- Teeny™ SC-70-6 package
- -40°C to +150°C junction temperature range

Applications

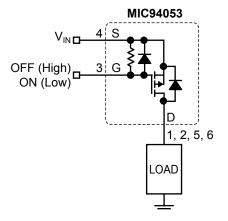
· Load switch in portable applications:

Cellular phones

PDAs

MP3 players

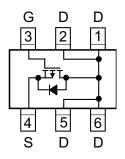
Notebook PCs

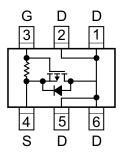

Barcode scanners

Ordering Information

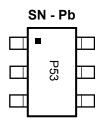
Part Number			Gate-Source Pull Up	Junction Temp Range	Package	
Standard	Marking	Pb-Free	Marking*			
MIC94052BC6	P52	MIC94052YC6	<u>P</u> 52	NO	-40°C to +150°C	SC-70-6
MIC94053BC6	P53	MIC94053YC6	<u>P</u> 53	YES	-40°C to +150°C	SC-70-6

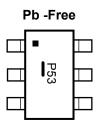
^{*} Under bar symbol may not be to scale.


Typical Application


Load Switch Application

MIC94052/53 Micrel, Inc.


Pin Configuration



MIC94052 SC-70-6 (C6)

MIC94053 SC-70-6 (C6)

Package Marking - Top View

Pin Description

Pin Number	Pin Name	Pin Function
1, 2, 5, 6	D	Drain. Ensure that all drain pins are connected together to optimize R _{DS(ON)} performance.
3	G	Gate
4	S	Source

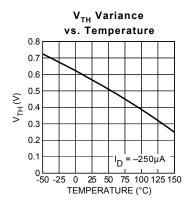
Absolute Maximum Ratings (Note 1)

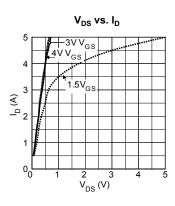
3 - (,
Drain-Source Voltage (V _{DS})–6V
Gate-Source Voltage (V _{GS})–6V
Continuous Drain Current (ID) Note 3
$T_{A} = 25^{\circ}C \dots \pm 2A$
$T_A = 85^{\circ}C$ ±1.4A
Pulsed Drain Current (I _{DP}) Note 3 ±6A
Continous Diode Current (I _S) Note 7 –50mA
Power Dissipation Note 3
SC-70-6 lead (T _A = 85°C)270mW
Ambient Storage Temperature (T _S)55°C to +150°C
ESD Rating Note 4

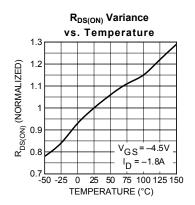
Operating Ratings (Note 2)

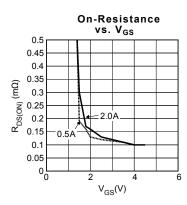
5.5V
0°C
C/W

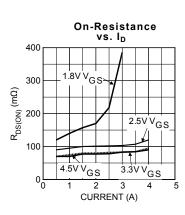
Electrical Characteristics

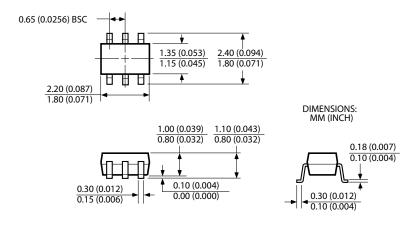

 T_{Δ} = 25°C, unless otherwise specified. **Bold** values indicate -40°C \le T₁ \le +150°C.


Symbol	Parameter	Condition	Min	Тур	Max	Units
Static	•			•		•
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.5		-1.2	V
I _{GSS}	Gate Body Leakage (MIC94052 only)	$V_{DS} = 0V, V_{GS} = -5.5V$			100	nA
R _{GS}	Gate-Source Resistance (MIC94053 only)	$V_{DS} = 0V, V_{GS} = -5.5V$	250	400	550	kΩ
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -5.5V, V_{GS} = 0V$ $T_{J} = +85^{\circ}C$			−1 −5	μA μA
R _{DS(ON)}	Drain-Source On-Resistance Note 8	$V_{GS} = -4.5V$, $I_{DS} = -100$ mA $V_{GS} = -3.6V$, $I_{DS} = -100$ mA $V_{GS} = -2.5V$, $I_{DS} = -100$ mA $V_{GS} = -1.8V$, $I_{DS} = -100$ mA		70 76 92 125	84 110 130 180	$\begin{array}{c} \text{m}\Omega\\ \text{m}\Omega\\ \text{m}\Omega\\ \text{m}\Omega \end{array}$
Dynamic, N	lote 6				_	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -5V, I_{D} = -0.5A, V_{GS} = -4.5V,$ $R_{GEN} = 50\Omega$		15		ns
t _r	Turn-On Rise Time	$V_{DD} = -5V, I_{D} = -0.5A, V_{GS} = -4.5V,$ $R_{GEN} = 50\Omega$		15		ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = -5V, I_{D} = -0.5A, V_{GS} = -4.5V,$ $R_{GEN} = 50\Omega$		60		ns
t _f	Turn-Off Fall Time	$V_{DD} = -5V, I_{D} = -0.5A, V_{GS} = -4.5V,$ $R_{GEN} = 50\Omega$		20		ns


- Note 1. T_A = 25°C unless otherwise noted. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings.
- Note 2. This device is not guaranteed to operate beyond its specified operating rating.
- Note 3. Mounted on 1 square-inch pad of 2 oz. copper.
- Note 4. IC devices are inherently ESD sensitive. Handling precautions required.
- **Note 5.** Pulse test; pulse width = 300μ s, duty cycle = 2%.
- Note 6. Guaranteed by design.
- Note 7. Body diode current conduction is not recommended.
- **Note 8.** Ensure that all drain pins are connected together to optimize $R_{DS(ON)}$ perfomance.


MIC94052/53 Micrel, Inc.


Typical Characteristics



Package Information

SC-70-6 Pin (C6)

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by □

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not□

reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Pr

Micrel for any damages resulting from such use or sale.

© 2002 Micrel Incorporated