
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Micro SD Card Breakout Board Tutorial
Created by lady ada

Last updated on 2017-01-09 05:39:14 PM UTC

2

3

6
6

7

8

10
10

15

17

18

20
20

21
21

22

22

22

Guide Contents

Guide Contents

Introduction

Look out!
What to watch for!

Formatting notes

Wiring

Library
Arduino Library & First Test

Writing files

Reading from files

Recursively listing/reading files

Functions
Other useful functions

Examples
More examples!

Download

Schematic

Fabrication Print

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 2 of 23

Introduction

If you have a project with any audio, video, graphics, data logging, etc in it, you'll find that

having a removable storage option is essential. Most microcontrollers have extremely

limited built-in storage. For example, even the Arduino Mega chip (the Atmega2560) has a

mere 4Kbytes of EEPROM storage. There's more flash (256K) but you can't write to it as

easily and you have to be careful if you want to store information in flash that you don't

overwrite the program itself!

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 3 of 23

If you're doing any sort of data logging, graphics or audio, you'll need at least a megabyte

of storage, and 64 M is probably the minimum. To get that kind of storage we're going to

use the same type that's in every digital camera and mp3 player: flash cards! Often called

SD or microSD cards, they can pack gigabytes into a space smaller than a coin. They're

also available in every electronics shop so you can easily get more and best of all, many

computers have SD or microSD card readers built in so you can move data back and forth

between say your Arduino GPS data logger and your computer graphing software:

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 4 of 23

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 5 of 23

Look out!

What to watch for!

There are a few things to watch for when interacting with SD cards:

One is that they are strictly 3.3V devices and the power draw when writing to the card can

be fairly high, up to 100mA (or more)! That means that you must have a fairly good 3.3V

power supply for the card. Secondly you must also have 3.3V logic to interface to the pins.

We've found that SD cards are fairly sensitive about the interface pins - the newest cards

are edge triggered and require very 'square' transitions - things like resistor dividers and

long wires will have a deleterious effect on the transition speed, so keep wires short, and

avoid using resistor dividers for the 3.3V logic lines. We suggest instead using level

shifters, such as HEF4050, 74LVX245 or 74AHC125 chips.

Secondly, there are two ways to interface with SD cards - SPI mode and SDIO mode.

SDIO mode is faster, but is more complex and as far as we can tell, requires signing non-

disclosure documents. For that reason, you will likely never encounter SDIO mode interface

code. Instead, every SD card has a 'lower speed' SPI mode that is easy for any

microcontroller to use. SPI mode requires four pins (we'll discuss them in detail later) so it's

not pin-heavy like some parallel-interface components

SD cards come in two popular flavors - microSD and SD. The interface, code, structure,

etc is all the same. The only differences is the size. MicroSD are much much smaller in

physical size.

Third, SD cards are 'raw' storage. They're just sectors in a flash chip, there's no structure

that you have to use. That means you could format an SD card to be a Linux filesystem, a

FAT (DOS) filesystem or a Mac filesystem. You could also not have any filesystem at all!

However, 99% of computers, cameras, MP3 players, GPS loggers, etc require FAT16 or

FAT32 for the filesystem. The tradeoff here is that for smaller microcontrollers (like the

Arduino) the addition of the complex file format handling can take a lot of flash storage and

RAM.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 6 of 23

Formatting notes

Even though you can/could use your SD card 'raw' - it's most convenient to format the card

to a filesystem. For the Arduino library we'll be discussing, and nearly every other SD

library, the card must be formatted FAT16 or FAT32. Some only allow one or the other. The

Arduino SD library can use either.

If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem.

However you may have problems with how the factory formats the card, or if it's an old card

it needs to be reformatted. The Arduino SD library we use supports both FAT16 and FAT32

filesystems. If you have a very small SD card, say 8-32 Megabytes you might find it is

formatted FAT12 which isn't supported. You'll have to reformat these card. Either way, it's

always good idea to format the card before using, even if it's new! Note that formatting will

erase the card so save anything you want first.

We strongly recommend you use the official SD card formatter utility - written by the SD

association it solves many problems that come with bad formatting!

Download the formatter from

https://www.sdcard.org/downloads/formatter_3/ (http://adafru.it/c73)

Download it and run it on your computer, there's also a manual linked from that page for

use.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 7 of 23

Wiring

Now that your card is ready to use, we can wire up the microSD breakout board! The

breakout board we designed takes care of a lot for you. There's an onboard ultra-low

dropout regulator that will convert voltages from 3.3V-6v down to ~3.3V (IC2). There's also

a level shifter that will convert the interface logic from 3.3V-5V to 3.3V. That means you can

use this board to interact with a 3.3V or 5V microcontrollers.

In this tutorial we will be using an Arduino to demonstrate the wiring and interfacing. If you

have another microcontroller, you'll need to adapt the wiring and code to match!

Because SD cards require a lot of data transfer, they will give the best performance when

connected up to the hardware SPI pins on a microcontroller. The hardware SPI pins are

much faster than 'bit-banging' the interface code using another set of pins. For 'classic'

Arduinos such as the Duemilanove/Diecimila/Uno those pins are digital 13 (SCK), 12

(MISO) and 11 (MOSI). You will also need a fourth pin for the 'chip/slave select' (SS) line.

Traditionally this is pin 10 but you can actually use any pin you like. If you have a Mega, the

pins are different! You'll want to use digital 50 (MISO), 51 (MOSI), 52 (SCK), and for the CS

line, the most common pin is 53 (SS). Again, you can change the SS (pin 10 or 53) later but

for now, stick with those pins.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 8 of 23

Connect the 5V pin to the 5V pin on the Arduino

Connect the GND pin to the GND pin on the Arduino

Connect CLK to pin 13 or 52

Connect DO to pin 12 or 50

Connect DI to pin 11 or 51

Connect CS to pin 10 or 53

There's one more pin CD - this is the Card Detect pin. It shorts to ground when a card is

inserted. You should connect a pull up resistor (10K or so) and wire this to another pin if

you want to detect when a card is inserted. We won't be using it for now.

That's it! Now you're ready to rock!

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 9 of 23

Library

Arduino Library & First Test

Interfacing with an SD card is a bunch of work, but luckily for us, Adafruit customer fat16lib

(William G) has written a very nice Arduino library just for this purpose and it's now part of

the Arduino IDE known as SD (pretty good name, right?) You can see it in the Examples

submenu

Next, select the CardInfo example sketch.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 10 of 23

This sketch will not write any data to the card, just tell you if it managed to recognize it, and

some information about it. This can be very useful when trying to figure out whether an SD

card is supported. Before trying out a new card, please try out this sketch!

Go to the beginning of the sketch and make sure that the chipSelect line is correct, for this

wiring we're using digital pin 10 so change it to 10!

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 11 of 23

OK, now insert the SD card into the breakout board and upload the sketch.

Open up the Serial Monitor and type in a character into the text box (& hit send) when

prompted. You'll probably get something like the following:

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 12 of 23

It's mostly gibberish, but it's useful to see the Volume type is FAT16 part as well as the

size of the card (about 2 GB which is what it should be) etc.

If you have a bad card, which seems to happen more with ripoff version of good brands,

you might see:

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 13 of 23

The card mostly responded, but the data is all bad. Note that the Product ID is "N/A" and

there is no Manufacturer ID or OEM ID. This card returned some SD errors. It's basically a

bad scene, I only keep this card around to use as an example of a bad card! If you get

something like this (where there is a response but it's corrupted) you can try to reformat it or

if it still flakes out, should toss the card.

Finally, try taking out the SD card and running the sketch again, you'll get the following,

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 14 of 23

It couldn't even initialize the SD card. This can also happen if there's a soldering or wiring

error or if the card is really damaged.

Writing files

The following sketch will do a basic demonstration of writing to a file. This is a common

desire for datalogging and such.

#include <SD.h>

File myFile;

void setup()

{

 Serial.begin(9600);

 Serial.print("Initializing SD card...");

 // On the Ethernet Shield, CS is pin 4. It's set as an output by default.

 // Note that even if it's not used as the CS pin, the hardware SS pin

 // (10 on most Arduino boards, 53 on the Mega) must be left as an output

 // or the SD library functions will not work.

 pinMode(10, OUTPUT);

 if (!SD.begin(10)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("initialization done.");

 // open the file. note that only one file can be open at a time,

 // so you have to close this one before opening another.

 myFile = SD.open("test.txt", FILE_WRITE);

 // if the file opened okay, write to it:

 if (myFile) {

 Serial.print("Writing to test.txt...");

 myFile.println("testing 1, 2, 3.");

 // close the file:

 myFile.close();

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 15 of 23

 Serial.println("done.");

 } else {

 // if the file didn't open, print an error:

 Serial.println("error opening test.txt");

 }

}

void loop()

{

 // nothing happens after setup

}

When you run it you should see the following:

You can then open up the file in your operating system by inserting the card. You'll see one

line for each time the sketch ran. That is to say, it appends to the file, not overwriting it.

Some things to note:

You can have multiple files open at a time, and write to each one as you wish.

You can use print and println() just like Serial objects, to write strings, variables, etc

You must close() the file(s) when you're done to make sure all the data is written

permanently!

You can open files in a directory. For example, if you want to open a file in the

directory such as /MyFiles/example.txt you can call

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 16 of 23

SD.open("/myfiles/example.txt") and it will do the right thing.

The SD card library does not support 'long filenames' such as we are used to. Instead, it

uses the 8.3 format for file names, so keep file names short! For example IMAGE.JPG is

fine, and datalog.txt is fine but "My GPS log file.text" is not! Also keep in mind that short file

names do not have 'case' sensitivity, so datalog.txt is the same file as DataLog.Txt is the

same file as DATALOG.TXT

Reading from files

Next up we will show how to read from a file, it's very similar to writing in that we SD.open()

the file but this time we don't pass in the argument FILE_WRITE this will keep you from

accidentally writing to it. You can then call available() (which will let you know if there is

data left to be read) and read() from the file, which will return the next byte.

#include <SD.h>

File myFile;

void setup()

{

 Serial.begin(9600);

 Serial.print("Initializing SD card...");

 // On the Ethernet Shield, CS is pin 4. It's set as an output by default.

 // Note that even if it's not used as the CS pin, the hardware SS pin

 // (10 on most Arduino boards, 53 on the Mega) must be left as an output

 // or the SD library functions will not work.

 pinMode(10, OUTPUT);

 if (!SD.begin(10)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("initialization done.");

 // open the file for reading:

 myFile = SD.open("test.txt");

 if (myFile) {

 Serial.println("test.txt:");

 // read from the file until there's nothing else in it:

 while (myFile.available()) {

 Serial.write(myFile.read());

 }

 // close the file:

 myFile.close();

 } else {

 // if the file didn't open, print an error:

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 17 of 23

 Serial.println("error opening test.txt");

 }

}

void loop()

{

 // nothing happens after setup

}

Some things to note:

You can have multiple files open at a time, and read from each one as you wish.

Read() only returns a byte at a time. It does not read a full line or a number!

You should close() the file(s) when you're done to reduce the amount of RAM used.

The SD card library does not support 'long filenames' such as we are used to. Instead, it

uses the 8.3 format for file names, so keep file names short! For example IMAGE.JPG is

fine, and datalog.txt is fine by "My GPS log file.text" is not! Also keep in mind that short file

names do not have 'case' sensitivity, so datalog.txt is the same file as DataLog.Txt is the

same file as DATALOG.TXT

Recursively listing/reading files

The last example we have shows more advanced use. A common request is for example

wanting to list every file on the SD card, or play ever music file or similar. In the latest

version of the SD library, you can recurse through a directory and call openNextFile() to

get the next available file. These aren't in alphabetical order, they're in order of creation so

just watch out for that!

To see it, run the SD→listfiles example sketch

Here you can see that we have a subdirectory ANIM (we have animation files in it). The

numbers after each file name are the size in bytes of the file. This sketch is handy if you

want to check what files are called on your card. The sketch also demonstrates how to do

directory handling.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 18 of 23

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 19 of 23

Functions

Other useful functions

There's a few useful things you can do with SD objects we'll list a few here:

If you just want to check if a file exists, use SD.exists("filename.txt") which will

return true or false.

You can delete a file by calling SD.remove("unwanted.txt") - be careful! This will

really delete it, and there's no 'trash can' to pull it out of.

You can create a subdirectory by calling SD.mkdir("/mynewdir") handy when you

want to stuff files in a location. Nothing happens if it already exists but you can always

call SD.exists() above first.

Also, there's a few useful things you can do with File objects:

You can seek() on a file. This will move the reading/writing pointer to a new location.

For example seek(0) will take you to the beginning of the file, which can be very

handy!

Likewise you can call position() which will tell you where you are in the file.

If you want to know the size of a file, call size() to get the number of bytes in the file.

Directories/folders are special files, you can determine if a file is a directory by calling

isDirectory()

Once you have a directory, you can start going through all the files in the directory by

calling openNextFile()

You may end up with needing to know the name of a file, say if you called

openNextFile() on a directory. In this case, call name() which will return a pointer to

the 8.3-formatted character array you can directly Serial.print() if you want.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 20 of 23

Examples

More examples!

If you want to use an SD card for datalogging, we suggest checking out our Datalogging

shield (http://adafru.it/dpH) and GPS logging shield (http://adafru.it/dpI) - there's example

code specifically for those purposes.

If you want to use the SD card for loading images (such as for a color display) look at our

2.8" TFT shield (http://adafru.it/dpJ) and 1.8" TFT breakout tutorials (http://adafru.it/ckK).

Those have examples of how we read BMP files off disk and parse them.

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 21 of 23

Download

Transcend microSD card datasheet (http://adafru.it/cma)

EagleCAD PCB files on GitHub (http://adafru.it/rfT)

Fritzing object in the Adafruit Fritzing library (http://adafru.it/aP3)

Schematic

Click to embiggen

Fabrication Print

Dims in inches

© Adafruit Industries
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-

tutorial
Page 22 of 23

© Adafruit Industries Last Updated: 2017-01-09 05:39:12 PM UTC Page 23 of 23

	Contact us
	Guide Contents
	Introduction
	Look out!
	What to watch for!

	Formatting notes
	Wiring
	Library
	Arduino Library & First Test
	Writing files
	Reading from files
	Recursively listing/reading files

	Functions
	Other useful functions

	Examples
	More examples!

	Download
	Schematic
	Fabrication Print

