

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

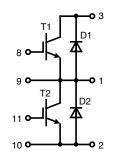
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



IGBT Module phaseleg

 I_{C25} = 280 A V_{CES} = 1200 V $V_{CE(sat) \text{ typ.}}$ = 2.2 V

Preliminary data

IGBTs T1 - T2 **Maximum Ratings Symbol Conditions** $T_{VJ} = 25^{\circ}C$ to $125^{\circ}C$ 1200 V_{CES} ± 20 V_{GES} I_{C25} $T_C = 25^{\circ}C$ 280 $T_{\rm C}=80^{\circ} C$ 200 I_{C80} $V_{GE} = \pm 15 \text{ V}; R_G = 7.5 \Omega; T_{VJ} = 125 ^{\circ}\text{C}$ 300 I_{CM} V_{CES} $V_{c\underline{EK}}$ RBSOA Clamped inductive load; L = 100 μH $V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}; R_G = 7.5 \Omega$ 10 μs (SCSOA) $T_{VJ} = 125^{\circ}C$; non-repetitive \mathbf{P}_{tot} $T_C = 25^{\circ}C$ 1100 W

Symbol Conditions

Characteristic Values

(T_M = 25°C, unless otherwise specified)

	(1V) = 20 °C, difference of the twice opening a)				
		min.	typ.	max.	
V _{CE(sat)}	$I_C = 200 \text{ A}; V_{GE} = 15 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.2 2.6	2.8	V
$V_{GE(th)}$	$I_C = 6 \text{ mA}; V_{GE} = V_{GE}$	4.5	5.5	6.5	V
I _{CES}	$V_{CE} = V_{CES}; V_{GE} = 0 V;$ $T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		0.8 3.5	3.3	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			400	nA
$\begin{aligned} & \mathbf{t_{d(on)}} \\ & \mathbf{t_r} \\ & \mathbf{t_{d(off)}} \\ & \mathbf{t_f} \\ & \mathbf{E_{on}} \\ & \mathbf{E_{off}} \end{aligned}$	$\begin{cases} \text{Inductive load, T}_{\text{VJ}} = 125^{\circ}\text{C} \\ \text{V}_{\text{CE}} = 600 \text{ V; I}_{\text{C}} = 200 \text{ A} \\ \text{V}_{\text{GE}} = \pm 15 \text{ V; R}_{\text{G}} = 7.5 \Omega \end{cases}$		170 60 680 50 29 20		ns ns ns ns mJ mJ
\mathbf{C}_{ies} \mathbf{Q}_{Gon}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 200 \text{ A}$		11 1.16		nF μC
R _{thJC}	(per IGBT) with heatsink compound		0.22	0.11	K/W K/W

Features

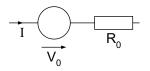
• NPT3 IGBT

- low saturation voltage
- positive temperature coefficient
- fast switching
- short tail current for optimized performance in resonant circuits
- HiPerFRED™ diodes
- fast and soft reverse recovery
- low operating forward voltage
- low leakage current
- Package
- low inductive current path
- screw connection to high current main terminals
- use of non interchangeable connectors for auxiliary terminals possible
- kelvin emitter terminal for easy drive
- isolated ceramic base plate

Applications

- drives
- AC
- DC
- power supplies
- rectifiers with power factor correction and recuperation capability
- UPS

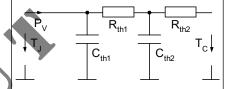
Free wheeling diodes D1 - D2					
Symbol	Conditions	Maximum Ra	Maximum Ratings		
I _{F25}	$T_C = 25^{\circ}C$	300	Α		
I _{F80}	$T_C = 80^{\circ}C$	190	A		


Symbol	Conditions	С	Characteristic Values		
		min.	typ.	max.	
V _F	$I_F = 200 \text{ A}; V_{GE} = 0 \text{ V}; $ $T_{VJ} = 25^{\circ}$ $T_{VJ} = 125^{\circ}$		2.3 1.7	2.7	V
I _{RM} t _{rr}	$\left. \begin{array}{l} I_F = 150 \text{ A; } di_F/dt = 1500 \text{ A/}\mu\text{s;} \\ V_R = 600 \text{ V; } V_{GE} = 0 \text{ V;} \end{array} \right. T_{VJ} = 125^\circ$	C	160 220		A ns
\mathbf{R}_{thJC} \mathbf{R}_{thJH}	(per IGBT) with heatsink compound		0.45	0.23	K/W K/W

Module				
Symbol	Conditions	Maximum Ratings		
T _{VJ}	operating	-40+150	°C	
T _{VJ} T _{stg}		-40+125	°C	
V _{ISO}	$I_{ISOL} \le 1 \text{ mA}$; 50/60 Hz	4000	V~	
M_d	Mounting torque (module, M6)	2.25 - 2.75	Nm	
	(terminal, M6)	4.5 - 5.5	Nm	

Symbol	Conditions		Characteristic Values			
			min.	typ.	max.	
d _s d _A	Creepage distance on surface Strike distance in air		2 2			mm mm
Weight		(250		g

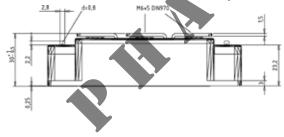
Equivalent Circuits for Simulation

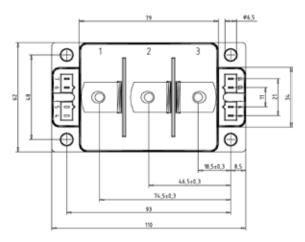

Conduction

IGBT (typ. at
$$V_{GE} = 15 \text{ V}; T_{J} = 125^{\circ}\text{C}$$
)
 $V_{0} = 1.0 \text{ V}; R_{0} = 8 \text{ m}\Omega$

Free Wheeling Diode D1-D2 (typ. at T_J = 125°C) V_0 = 1.3 V_r R_0 = 2 $m\Omega$

Thermal Response




IGBT (typ.)

 $C_{th1} = tbd J/K; R_{th1} = tbd K/W$ $C_{th2} = tbd J/K; R_{th2} = tbd K/W$

Free Wheeling Diode D1-D2 (typ.) $C_{th1} = tbd J/K; R_{th1} = tbd K/W$ $C_{th2} = tbd J/K; R_{th2} = tbd K/W$

Dimensions in mm (1 mm = 0.0394")

Optional accessories for modules

keyed twin plugs (UL758, style 1385, CSA class 5851, guide 460-1-1)

- Type ZY180L with wire length 350mm
- for pins 4 (yellow wire) and 5 (red wire)
- for pins 11 (yellow wire) and 10 (red wire)
- Type ZY180R with wire length 350mm
- for pins 7 (yellow wire) and 6 (red wire)
- for pins 8 (yellow wire) and 9 (red wire)

IXYS reserves the right to change limits, test conditions and dimensions.