ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

= \Mlkroilelﬂrnnlka
DEVELOPMENT TOOLS | COMPILERS I BOOKS

Creating the first project in

mikroPascal
PRO for ARM

Copyright © mikro€Elektronika, December 2011. All rights reserved.

1. Introduction to mikroPascal PRO for ARM

mikroPascal PRO for ARM® organizes
applications into projects consisting of a
single project file (file with the .mppar
extension) and one or more source files (files
with the .c extension). The mikroPascal PRO
for ARM® compiler allows you to manage
several projects at a time. Source files can be
compiled only if they are part of the project.

A project file contains:

* Project name and optional description;
* Target device in use;

* Device clock;

« List of the project source files;

« Binary files (*.emcl); and

« Other files.

In this reference guide, we will create a new
project, write code, compile it and test the
results. The purpose of this project is to make
microcontroller PORTA LEDs blink, which will
be easy to test.

Tie Uit wew Bupc Bad Bun Lick bes

T ot . il
i a— T SR . .
5 e | 4 e Miinking (The simiest sinple exepiel
il s q e 3 Riaoelshianibe, 3935
=)
o At Comwents !
+ melEDs 2
ke L v
[2
S orewty = 1
o B 4
Fgale .
nap :
Sgunltes. .
Froacy | S e |
' FTegTem LadBlinkingt
LT e e ‘: { Dezlarstions sesties |
satin - a—
il i) e SHI0_Digacal Cuepus{§SHIO_FORTA DATR BITS, GFI0_PIMMASK RIlj: Fuz PORTA A Figi .
. SREE Dipizal Cuspus (BOFIZ_BORTS DATR BITH, OFI0 PINMASK RSTr Bec PRI ar Siin =
& Sohmws M . FHID_Digaceld _Cusputi3RIC_PORTS_DATE_NITR. _GFIO_FUBGIE ALI)) Sar PORTT aa Sigi. |J
[+ " (o -
AT = — |
| B vescer B QuokConerne| L
[Breen. (= e
e Heanage Ha. WM . .
L L] FrascEAM Diwe) 1 Dy R b 2001 iabc A Drytesis O Duna
L] . Bt) e BOM Brimils 193 01
H - fsstnstuens ro-iiion
. - R i gl 3
H P ey T e 1
|len . Compand [7 T dow STIRAARTS ABMI e
@ Main Toolbar @ Messages @ Project Manger
@ Code Explorer @ Code Editor @ Library Manager

@ Project Settings

Page 2

@ Image Preview

2. Hardware Connection Figure 2-1:

vaoge Hardware

. X] connection
Let's make a simple “Hello world” example for the T o] T :
schematics

selected microcontroller. First thing embedded
programmers usually writeis asimple LED blinking
program. So, let's do that in a few simple lines of
Pascal code.

3

vees

<

i

[

LM3S9B95 L

10

LED blinking is just turning ON and OFF LEDs that
are connected to desired PORT pins. In order to see
the example in action, it is necessary to connect
the target microcontroller according to schematics
shown on Figure 2-1. In the project we are about
to write, we will use only PORTA, so you should
connect the LEDs to PORTA only.

vees

K7 axr KT a7

D4 N oS N 08 o7 N
LED LED LED LD

.
Pas
Pas
a7

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler Step 2: Start up the compiler

Install the mikroPascal PRO for ARM® compiler from the Product Double click on the compiler icon in the Start menu, or on your desktop

DVD or download it from the MikroElektronika website: to Start up the mikroPascal PRO for ARM® compiler. The mikroPascal
PRO for ARM® |DE (Integrated Development Environment) will appear

http://www.mikroe.com/eng/products/view/753/mikroPascal-pro-for-arm/ on the screen. Now you are ready to start creating a new project.

Page 3

3. Creating a New Project

The process of creating a new project is very
simple. Select the New Project option from
the Project menu as shown below. The New
Project Wizard window appears. It can also
be opened by clicking the New Project icon
from the Project toolbar.

Project | Build Run Tools Help
', New Project... Shift+ Ctrl+N

E® Open Project... Shift+ Ctrl= 0
@ Open Project Group...

Recent Projects »

The New Project Wizard (Figure 3-1) will
guide you through the process of creating
a new project. The introductory window of
this application contains a list of actions to
be performed when creating a new project.

@@ Click Next.

F |
Mew Project Wizard ﬁ

Welcome to the New Project
Wizard

This wizard helps you:

+ Create a new project

s Select the device for your project
» Setup device clock

+ Add project files

Click Next to continue

[t-Basky | Next »? el

Figure 3-1: Introductory window of the New Project Wizard

Page 4

First thing we have to do is to specify the
general project information. This is done
by selecting the target microcontroller, it's
operating clock frequency, and of course
- naming our project. This is an important
step, because compiler will adjust the
internal settings based on this information.
Default configuration is already suggested
to us at the begining. We will not change the
microcontroller, and we will leave the default
as the choice for this project.

LS

IR
Mew Project Wizard lﬁ

Step 1: Project Settings:

Project Name: MyProject

Project folder: C:\Users\Public\Documents\Worl, T
Device Name: LM359B85 il
Device Clock: 16.000000) MHz

Enter project name, project folder, select device name and enter a device dock
(for example: 956.235).

Note: Project name and project folder must not be left empty.

4 Back Next = Cancel

Figure 3-2: You can specify project name, path, device and clock in the first step

p

Mew Project Wizard
If you do not want to use the suggested path Step 1: Project Settings:
for storing your new project, you can
. In order to do that, f B onee Fhp Faldap ﬁ
follow a simple procedure: ika\mikrot Browse
Click the button of the Project g
Settings window to open the 4 | Public Documents &
dialog. | mikroElektronika |-._:|
+ 1l RAD Studio S
Select the desired folder to be the > |, Rentcom
destination path for storing your new [0 Work Je=ve= dock
project files. b g Music | .
I [i&5] Pictures
Click the button to confirm your b B8 Videos i
selection and apply the new path. | [PRI I o] I T J I
Cancel

L

Figure 3-3: Change the destination folder using Browse For Folder dialog

r R
Mew Project Wizard lﬁ

Once we have selected the destination Step 1: Project Settings:
project folder, let's do the rest of the project
settings: Project Name: | [El=lllyial]
Project folder: C:\Users\Public\Documents\Waorld, Browse
Enter the name of your project. Since ;
. y. proj Device Name: LM3559B85 -
we are going to blink some LEDs, -
Device Clock: 16.000000 MHz

it's appropriate to call the project

For this demonstration, we will use = —_— = = =
the default . Clock speed IEfrtl’Ee;far::Iipelrét: ré%T;al‘spjr.ojEtt folder, select device name and enter a device dodk

depends on your target hardware, and

whether you are using PLL or not. But
however you configure your hardware,
make sure to specify the exact clock

Note: Project name and project folder must not be left empty.

() that the microcontroller is 4 Back Next & Cancel
operating at.

LS

) Figure 3-4: Enter project name and change device clock speed if necessary
Click the O button to proceed.

This step allows you to include additional files
that you need in your project: some headers
or source files that you already wrote, and
that you might need in further development.
Since we are building a simple application, we
won't be adding any files at this moment.

Click

-
Mew Project Wizard

Step 2: Select files you want to add to project.
Add File To Project:
@ add
Remove
File Name
Remove All
4 Back z Next & © | Cancel

LS

Figure 3-5: Add existing headers, sources or other files if necessary

Following step allows you to quickly set
whether you want to include all libraries in
your project, or not. Even if all libraries are
included, they will not consume any memory
unless they are explicitely used from within
your code. The main advantage of including
all libraries is that you will have over

available for use in your code
right away, and visible from

. We will leave this in default

configuration:

Make sure to leave
selected.

Click

[iR
Mew Project Wizard lﬁ

Step 3: Select initial state for library manager:

Indude Libraries
@ Indude All (Default)

) Indlude None {Advanced)

Selecting all libraries is recommended for beginners.

Selecting libraries manually using Library Manager -
{recommended for advanced users) results in faster compilation. Library Manager Help

4 Back Next & © | Cancel

LS

Figure 3-6: Include all libraries in the project, which is a default configuration.

F TR
Mew Project Wizard lﬁ

After all configuration is done, final step

. . Step 4: You have successfully created a new project. Click "Finish” to close a wizard.
allows you to do just a bit more.

There is a check-box called
i~

. . J Open Edit Project window to set Configuration bits
at the final step. isa

specialized window which allows you to
do all the necessary oscillator and PLL
settings. We made sure that everything
is described in plain English, so you = — = = —
will be able to do the settings without Chedking "Open Edit Project window™ will open "Edit project form” after

having to open the datasheet. Anyway, closing this wizard. This enables you to set device configurations bits.

since we are only building a simple
application, we will leave it at default
configuration (internal 1L6MHz oscillator
with PLL disabled). 4 Back

Cancel

LS

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

Click

Blank new project created [EEEFEEErr—————— e

New project is finally created. A new source
file called “LedBlinking.mbas” is created and
it contains the begin ... end block, which will
hold the program. You may notice that project
is configured according to the settings done in

[Muin pengras

the New Project Wizard.
 program LedBlinking;
e —"|'.f:-‘=_W' -
Project Settings { Declarations sectidy
ElggDevice
Mame: LM3559B55

=/{f MCU Clock

Frequency: 16.000000) MHz

Figure 3-8: New blank project is created with your configuration

Page 11

4. Code Example

1 program LedBlinking;
Time has come to do some coding. mikroPascal 2 .
PRO for ARM® has the unique libraries that © Dbegin ,
enable you to do complicated tasks in a 4 { Main program }
single line of code. Built-in GPIO library S o
enables you to set configure each PORT and 6 // Set . PQR TA as digital output
enable pins that you need, without worrying U GPIO_Digital Output (RGPIO_PORTA,
about complex procedure that this operation 8 _GPIO_PINMASK ALL);
requires. To demonstrate this, we will write 9
our first line of code: 10 // Set PORTA initial value to zero
11 GPIO PORTA DATA := 0;
// Set PORTA as digital output - -
GPIO_Digital_ Output (12
@GPIO_PORTA, 13 while TRUE do
_GPIO_PINMASK ALL); 14 begin
Once we have enabled PORTA to act as digital 15 // Toggle PORTA
output, we can now initialize PORTA with 16 GPIO_PORTA_DATA := NOT GPIO_PORTA_DATA;
logic zeros on every PORT pin: 17
18 // Delay 1000 ms
// Set PORTA initial value to 0 .
GPIO PORTA DATA = 0; 19 Delay_ms (1000) ;
20 end;
Finally, in a while() loop we will toggle the 21
PORTA value, and put a 1000 ms delay, so the 22 end.

blinking is not too fast.
Figure 4-1: Complete source code of the PORTA LED blinking

Page 12

r
u mikroPascal PRO for ARM v.1.0.0 - C:\Users\Public\Documents\Work\LedBlinking.mppar

File Edit View Project Build Run

Took Help

A D

E":,EB 52458 élﬁgf D2 HeB&iddddi - =
Blinking Project Manager [1/1] - LedBlinking.mppar 5° [2%
program LedBlinking: [R ‘
) i 5 5, LedBlinking.mppar
—— { Declarations section } o B
dctive Comments . 5| Ledsinking.mpas
Include i oot Sinaries
Extems { Main program | I) Project Level Defines
Fouards () Image Fies
- Types // Set BORTA as digital optput [EEPROM Files
Globats GPIC_Digital_ Output(@GPIO_PORTA, - IZ) Active Comments Files
& Functions 19 _GPIC_PINMASK ALL); I utputFiles
I Other Files
// Set PORTA initisl value to zero
- GPIO_FORTA DRTR := 0: =
& Project Settings. F=) ElerawManagEr & Project Explarer
EigDerics hile TRUE d | o
whtile o |2 20 | & s |
B begin 3. mikroE]
Name: LM - 5 teacia sus = mikrol - -
GPIC PCRTA DATA := NOT GPIO PORTA DATA;
= = = =b Button
=4 MCU Clack CAN_SPI
z0 // Delay 1000 ms Compact_Flash
Delay ms(1000); 7
Frequency:| 16.000000] MHz e (1000} Compact_Flash_FAT1E
ani; Conversions
C_stdib E
= Buid? Debugger Type 2 oo € Type
= EPSON_S1D13700
Build Type R L. e
® Foloais Debug Figure 4-2: This is how the code looks ~
Debunger written in compiler code editor window kil
@ Software Hardware L =
i Keypaddxd
— Led
Messages ‘E Qu\d(&:uverterl Ld Constants
Warrings Hints Manchester
Line Message No. Message Text Unit Mitic
Mmc_FAT16
Mmc_FAT16_Defs
One_Wire
Port_Expander
Psz
PWM
£ i 015 -
24:5 Insert C\Users\Public\Documents\Work\ LedBlinking.mpas

Page 13

5. Building the Source

When we are done writing our first | Build | Run Tools Help

LedBlinking code, we can now build [‘a. Build Ctrl+F9 |
the project and create a .HEX file Rebuild All Sources Alt+F9

which can be loaded into our target a
microcontroller, so we can test the
program on real hardware. “Building”

Build All Pr

Stop Build All Ctrl+F12

% Build + Program Ctrl+F11

includes compilation, linking and
optimization which is all done automatically. Build your code by clicking
on the #, icon in the main toolbar, or simply go to Build menu and
click Build [CTRL+F9]. Message window will report the details of the
building process (Figure 5-2). Compiler automatically creates necessary
output files. LedBlinking.hex (Figure 5-1) is among them.

Name Date modified Type Size
|| LedBlinking.asm 2011-12-27 TA0PM ASM File 1KB
| LedBlinking.brk 2011-12-27 38 PM BRK File 1KB
|| LedBlinking.cfg 2011-12-27T40PM CFGFile 1KB
E LedBlinking.dct 2011-12-27 740 PM AdobeIllustrator 5... 625 KB
|| LedBlinking.dit 2011-12-27 740 PM DLT File 11 KB
|| LedBlinking.emcl 2011-12-27 T40PM EMCL File 17KB
‘ 2] LedBlinking.hex 2011-12-27 740 PM HEX File 4 KB
| LedBlinking.log 2011-12-27 7:40 PM Text Document 3KB
|| LedBlinkingIst 2011-12-27 T40PM LST File 24 KB
|| LedBlinking.mpas 2011-12-27 138 PM MPAS File 1KB
m LedBlinking.mpas.ini 2011-12-27 1:38 PM Configuration sett.. 1KB
LedBlinking.mppar 2011-12-27 740 PM mikroPascal proje... 2KB
(=l LedBlinking.mppar_callertablet 2011-12-27 740 PM TXT File 1KB
U LedBlinking.user.dic 2011-12-27 T40PM Text Document 0KB
|_.i LedBlinking.dbg 2011-12-27 740 PM DBG File 133 KB

Figure 5-1: Listing of project files after building is done

[Messages |@Qnd(6mverher|

| Errors Warnings Hints

Line Message No. Message Text Unit -
1] 1144 Static RAM (bytes): 0 Dynamic RAM (bytes): 98301 StaticRAM (bytes): 0 Dyna

1} 1144 Used ROM (bytes): 1398 (1%:) Free ROM (bytes): 260746 (99%:) Used ROM (bytes): 1398 (1°

4] 145 Project Linked Successfully LedBlinking. mppar

a 140 Linked in 754 ms =
i] 141 Project 'LedBlinking.mppar’ completed: 1138 ms 1
a 103 Finished successfully: 27 Dec 2011, 19:40:08 LedBlinking. mppar =
1 i | »

24: 51 Insert Compiled ChUsers\Public\Documents\Work\LedBlinking.mpas

Figure 5-2: After the successful compilation and linking, the message window should look something like this
Page 14

)

If you need to change the target microcontroller or clock speed, you don't have to go through the new project wizard all over again. This can be
done quickly in the Edit Project window. You can open it using Project->Edit Project [CTRL+SHIFT+E] menu option.

@

Edit Project =) @ To change your MCU, just select the

rlgcls'cl?ﬂtn.rﬁllme — [) I o e = s 01 _ desired microcontroller from the
S lkns Qs St dropdown list.
Crystal value MCL Mame p
[5.000 MHz(reset value) -]
F;:;Smmkﬂm' | Oscllator Frequency [Mit] 02 (2 To change your oscillator settings
5“&";_ o - ? enter the oscillator value and adjust
~Build Type 7 Heap 1
[s Zlllz| | @ releoze ®® petg sz« TR oscillator configuration registers
l‘;i:“'e’;""' | i ! using drop-down boxes.
i WWE(e -Configuration Registers-
pass
[FLLis bypassed 7] Yo e Cndeiel @ Several most commonly used
1 Oscilla isabl —0 d Schy . . .
ﬁnz:ﬂm:zﬁme " = @ . ond oo oscillator settings can be loaded using
Hain Oscillator Dissble L4 Seitens the provided oscillator “schemes”.
[ain Osclor (405C) s cisabled -] o Load the desired scheme by clicking
Auto Clock Gating Default
oo = [| the Load Scheme button.
Use RCC2 (when set, overrides the RCC register fields) E—
- OK .
[Donot use Rec2 7] : @ Select whether to build a Debug
Oscillator Source 2 . Cancel B f
[P Al | General Output Settings .. HEX, which is necessary for hardware
debugging, or a final Release HEX,

Figure 6-1: Edit Project Window
Page 15

If you want to learn more about our products, please
visit our website at www.mikroe.com. If you are
experiencing some problems with any of our products or
just need additional information, please place your ticket
at www.mikroe.com/esupport If you have any questions,
comments or business proposals, do not hesitate to
contact us at office@mikroe.com

Designed by
MikroElektronika,
December 2011.

	Contact us

