

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

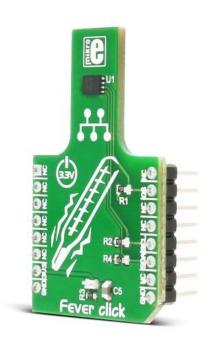
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Fever click

PID: MIKROE-2554

Weight: 22 g

Fever click measures your body temperature with the accuracy of 0.1°C (37°C to 39°C). The click carries MAX30205 human body temperature sensor. Fever click is designed to work on a 3.3V power supply. It communicates with the target MCU over I2C interface.

MAX30205 sensor features

The MAX30205 temperature sensor accurately measures temperature and provide an overtemperature alarm/interrupt/shutdown output.

This device converts the temperature measurements to digital form using a high resolution, sigma-delta, analog-to-digital converter (ADC). An I2C-compatible two-wire serial interface allows access to conversion results.

The MAX30205 has 0.1°C accuracy (37°C to 39°C), and 16-Bit (0.00390625°C) temperature resolution.

Normal body temperature

The normal body temperature, of a healthy person, is 37°C. But this depends on various factors, like the age and sex of the person, the temperature of the room the person is in, the time of the day, etc.

A body temperature above 37.5°C up to 40°C is considered a fever.

Key features

- MAX20305 sensor
 - o 0.1°C Accuracy (37°C to 39°C)
 - o 16-Bit (0.00390625°C) Temperature Resolution
 - o 600μA (typ) Operating Supply Current
- I2C interface
- 3.3V power supply

Specification

Product Type	Temperature / Humidity
Applications	Fitness and medical applications
MCU	MAX30205 human body temperature sensor
Key Features	0.1°C Accuracy (37°C to 39°C), 16-Bit (0.00390625°C) temperature resolution
Interface	I2C
Power Supply	3.3V
Compatibility	mikroBUS
Click board size	M (42.9 x 25.4 mm)

Pinout diagram

This table shows how the pinout on **Fever click** corresponds to the pinout on the mikroBUSTM socket (the latter shown in the two middle columns).

Notes	Pin	mikroBUS tm		Pin	Notes		
Not connected	NC	1	AN	PWM	16	NC	Not connected
Not connected	NC	2	RST	INT	15	os	Overtemperature Shutdown Output. Open-drain.

Not connected	NC	3	CS	TX	14	NC	Not connected
Not connected	NC	4	SCK	RX	13	NC	Not connected
Not connected	NC	5	MISO	SCL	12	SCL	Serial-Data Clock Input. Open-drain.
Not connected	NC	6	MOSI	SDA	11	SDA	Serial-Data Input/Output Line. Open-drain.
Power supply	+3.3V	7	3.3V	5V	10	NC	Not connected
Ground	GND	8	GND	GND	9	GND	Ground

Maximum ratings

Description	Min	Тур	Max	Unit
Supply Voltage	-0.3		4	V
Input Current at Any Pin		5		mA
Continuous Power Dissipation		1951.2		mW
Operating Temperature Range	0		50	°C

Programming

Code examples for Fever click, written for MikroElektronika hardware and compilers are available on Libstock.

Fever click library communicates with the sensor, and converts the measured data into useful format. It also contains functions for the configuration of the click.

Code snippet

The following code snippet shows initialization of the system, writing a value into the register, and then reading that value.

```
01 void main()
02 {
03    system_init();
04    fever_init(0x48);
05    Delay_ms (100);
06    /*sets the temperature limit to specified value*/
```

```
fever_write_temperature (37.80, FEVER_TOS);

/*reads stored temperature limit, with 0.01 rounding error*/
fever_read_temperature_text (uart_text, FEVER_TOS);

UART_Write_Text("rn Current temperature limit for output signal: ");

UART_Write_Text (uart_text);

Delay_ms( 1000 );
```