

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

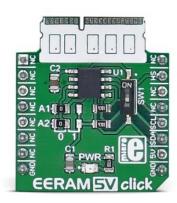
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



EERAM 5V click

PID: MIKROE-2729

Add memory to your project with **EERAM 5V click**. It carries the 47C16 EERAM, a 16Kbit SRAM with EEPROM Backup from Microchip. The click is designed to run on a 5V power supply. It communicates with the target microcontroller over I2C interface, with additional functionality provided by the INT pin on the mikroBUSTM line.

47C16 features

The Microchip Technology Inc 47C16 EERAM is a 16Kbit SRAM with EEPROM Backup. The I2C EERAM Memory is a Low-Cost NVSRAM that Eliminates the Need for an External Battery to Retain Data. The device is organized as 2048 x 8 bits and utilizes the I2C serial interface. The 47C16 provides infinite read and write cycles to the SRAM while the EEPROM cells provide high endurance non-volatile storage of Data. With an external capacitor, SRAM data is automatically transferred to the EEPROM upon power-loss. Data can also be transferred manually by using either the hardware store pin or by software control. **Upon power-up, the EEPROM data is automatically recalled to the SRAM**. Recall can also be initiated through software control. The unlimited endurance makes the EERAM useful in applications that need to constantly monitor or record data.

Specifications

Туре	EEPROM
Applications	Additional memory for your projects
On-board modules	47C16 I2C serial EERAM from Microchip
Key Features	16K bits density, 1 MHz Maximum clock frequency, Automatic Store to EEPROM upon power-down (using optional external capacitor)
Key Benefits	Retain the contents of the SRAM memory when system power is lost
Interface	I2C
Input Voltage	5V
Click board size	S (28.6 x 25.4 mm)

Pinout diagram

This table shows how the pinout on **EERAM 5V click** corresponds to the pinout on the $mikroBUS^{TM}$ socket (the latter shown in the two middle columns).

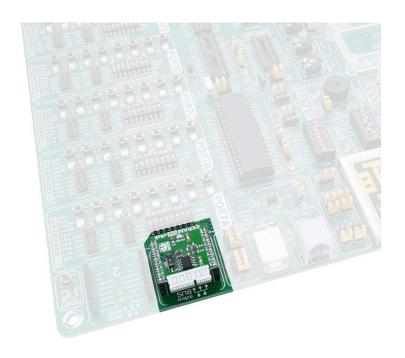
Notes	Pin	mikro* BUS			5	Pin	Notes
	NC	1	AN	PWM	16	NC	
	NC	2	RST	INT	15	HS	Hardware store
	NC	3	CS	TX	14	NC	
	NC	4	SCK	RX	13	NC	
	NC	5	MISO	SCL	12	SCL	SCL I2C line
	NC	6	MOSI	SDA	11	SDA	SDA I2C line
Power supply	+3.3V	7	3.3V	5V	10	NC	
Ground	GND	8	GND	GND	9	GND	Ground

Jumpers and settings

Designator	Name	Default Position	Default Option	Description
A1	A1	Left	0	Address select 1
A2	A2	Left	0	Address select 2
SW1	SW1	Down	OFF	Automatic store data or manual

Buttons and LEDs

Designator	Name	Туре	Description
PWR	PWR	LED	Power Indication LED


Programming

Code examples for EERAM 5V click, written for MikroElektronika hardware and compilers are available on Libstock.

Code snippet

The following code snippet reads data from the SRAM memory location, then writes to it, then reads it again to verify that write. It then copies the SRAM contents to EERAM memory.

```
01
   //Read and write test
       LOG ("rnrnReading 11 bytes of SRAM memory, from addresses 0x0100:");
02
03
       EERAM_read (0x01, 0x00, readData, 11);
04
       outputHex (readData, 11);
05
06
      LOG ("rnrnWriting values 0x42 to SRAM memory");
07
       LOG (", at addresses 0x0100 - 0x0105...");
       memset (writeData, 0x42, 6);
80
09
      EERAM_write (0x01, 0x00, writeData, 6);
10
11
      LOG ("rnrnReading 11 bytes of SRAM memory, from addresses 0x0100:");
12
      EERAM_read (0x01, 0x00, readData, 11);
13
       outputHex (readData, 11);
14
15
      //Storing test
16
      LOG ("rnrnStoring SRAM data to EERAM memory...");
      EERAM_command (_EERAM_CMD_STORE);
17
```

