

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

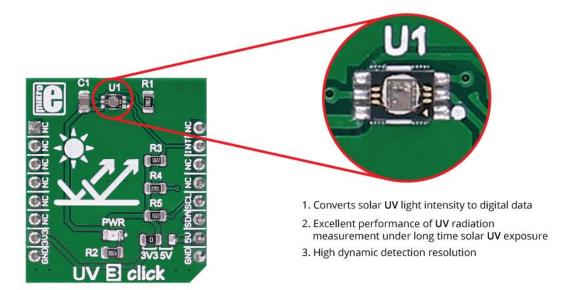
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



UV 3 click

PID: MIKROE-2736



UV 3 click is an advanced ultraviolet (UV) light sensor with I2C protocol interface. The click carries VEML6070 UVA light sensor designed by the CMOS process. UV 3 click runs on either 3.3V or 5V power supply.

VEML6070 sensor features

VEML6070 is an advanced ultraviolet (UV) light sensor with I2C protocol interface and designed by the CMOS process. The active acknowledge (ACK) feature with threshold windows setting allows the UV sensor to send out a UVI alert message.

VEML6070 incorporates a photodiode, amplifiers, and analog/digital circuits into a single chip. VEML6070's adoption of FiltronTM UV technology provides the best spectral sensitivity to cover UV spectrum sensing. It has an excellent temperature compensation and a robust refresh rate setting that does not use an external RC low pass filter. VEML6070 has linear sensitivity to solar UV light and is easily adjusted by an external resistor.

Specifications

Туре	Optical						
On-board modules	VEML6070 UVA light sensor						
lKev Features	Converts solar UV light intensity to digital data, excellent performance of UV radiation measurement under long time solar UV exposure						
Key Benefits	Excellent UV sensitivity and linearity via Filtron™ technology						
Interface	I2C						
Input Voltage	3.3V or 5V						
Click board size	S (28.6 x 25.4 mm)						

Pinout diagram

This table shows how the pinout on **UV 3 click** corresponds to the pinout on the mikroBUSTM socket (the latter shown in the two middle columns).

Notes	Pin	mikro* BUS				Pin	Notes
	NC	1	AN	PWM	16	NC	
	NC	2	RST	INT	15	ACK	Acknowledge pin
	NC	3	CS	TX	14	NC	
	NC	4	SCK	RX	13	NC	
	NC	5	MISO	SCL	12	SCL	I2C digital serial clock input
	NC	6	MOSI	SDA	11	SDA	I2C digital serial data output
Power supply	+3.3V	7	3.3V	5V	10	+5V	Power supply
Ground	GND	8	GND	GND	9	GND	Ground

Jumpers and settings

Designator	Name	Default Position	Default Option	Description
JP1	Logic level	Left	13.3V	Data in level Voltage Selection 3V3/5V, left position 3V3, right position 5V

Programming

Code examples for UV 3 click, written for MikroElektronika hardware and compilers are available on Libstock.

Code snippet

This code reads the value of UV light from VEML6070 and sends it to the user via UART.

```
01 char uartTxt [20];
02
03 void systemInit()
04 {
       Uart5_Init (9600);
05
06
       Uart5_Write_Text ("rnInitializing...");
       I2C2_Init( 100000 );
07
80
       Delay_ms (100);
       UV_3_initDriver (0x70, I2C2_Start, I2C2_Stop, I2C2_Write, I2C2_Read);
09
10
       VEML6070_Init();
11
       Uart5_Write_Text ("rnInitialized");
12 }
13
14 void main()
15 {
16
       systemInit();
17
18
      while( 1 )
19
       {
20
             Uart5_Write_Text ("rnUV value: ");
21
             IntToStr (UV_3_read(), uartTxt);
             Uart5_Write_Text (uartTxt);
22
23
             Delay_ms (750);
24
       }
25 }
```