imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

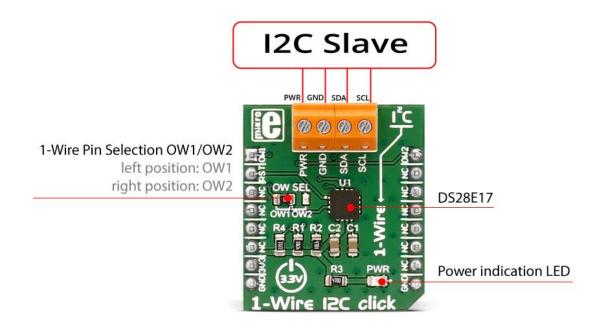
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1-Wire I2C click

PID: MIKROE-2750



1-Wire I2C click carries DS28E17 1-Wire-to-I2C master bridge from Maxim Integrated. The click runs on a 3.3V power supply.

It communicates with the target microcontroller over 1-Wire® protocol, using the following pins on the mikroBUSTM line: AN, PWM, RST.

How the click works

There are two on-board screw terminals used for connecting SCL, SDA, Vcc and GND of the I2C slave. After that, you are able to communicate with that slave through the onboard DS28E17 MCU.

DS28E17 features

The DS28E17 is a 1-Wire slave to I2C master bridge device that interfaces directly to I2C slaves at standard (100kHz max) or fast (400kHz max). Data transfers serially through the **1-Wire® protocol**, which requires only a single data lead and a ground return. Every DS28E17 is guaranteed to have a unique 64-bit ROM registration number that serves as a node address in the 1-Wire network.

Specifications

Туре	1-wire
Applications	1-Wire I2C click can be used to extend the length of I2C lines by converting I2C to 1- wire
On-board modules	DS28E17 1-Wire-to-I2C master bridge from Maxim Integrated
Interface	1-wire,GPIO
Input Voltage	3.3V
Click board size	S (28.6 x 25.4 mm)

Pinout diagram

This table shows how the pinout on **1-Wire I2C click** corresponds to the pinout on the mikroBUSTM socket (the latter shown in the two middle columns).

Notes	Pin	● ● mikro* ● ● ● BUS				Pin	Notes
1-Wire 1st pin	OW1	1	AN	PWM	16	OW2	1-Wire 2nd pin
Reset pin	RST	2	RST	INT	15	NC	
	NC	3	CS	ТХ	14	NC	
	NC	4	SCK	RX	13	NC	
	NC	5	MISO	SCL	12	NC	
	NC	6	MOSI	SDA	11	NC	
Power supply	+3.3V	7	3.3V	5V	10	NC	
Ground	GND	8	GND	GND	9	GND	Ground

Programming

Code examples for 1-Wire I2C click, written for MikroElektronika hardware and compilers are available on Libstock.

Code snippet

The following code snippet shows 1-Wire I2C click communication with the Thermo 4 click. It uses skipRom, writeI2C, and readI2C commands to read the temperature data from the sensor, and displays it back via UART output.

```
01 void One_Wire_I2C_Task()
02 {
03
      char uartText [20];
04
      char IWireData [20];
05
06
     IWireData [0] = 0x00;
                            //Thermo 4 temperature register address
07
80
     OWI2C_skipRom ();
09
      OWI2C_writeI2C ( OWI2C_WRITE_NORMAL_NOSTOP, 0x48, 1, &IWireData);
//0x48 is unshifted I2C address of Thermo 4 click
10
      OWI2C_skipRom ();
      OWI2C_readI2C ( 0x48, 2, &IWireData);
11
12
13
    UART_Write (13);
14
      UART_Write (10);
      UART_Write_Text("Current temperature is: ");
15
16
      ByteToStr(IWireData[0], uartText);
17
      UART_Write_Text (uartText);
18
19
     Delay_ms (2000);
20 }
```