

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

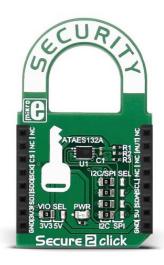
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

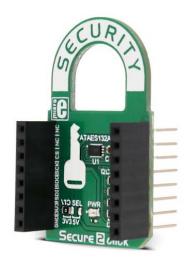
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

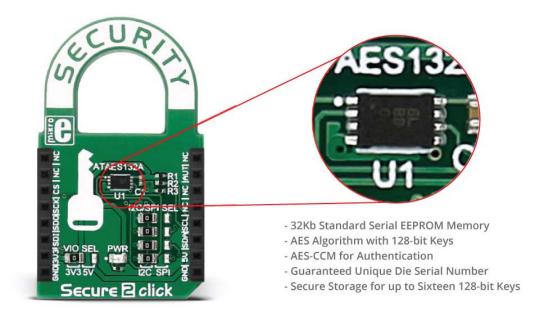
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Secure 2 click

PID: MIKROE-2760



Secure 2 click carries the ATAES132A, a cryptographic coprocessor with secure hardware-based key storage from Microchip. The click is designed to run on either 3.3V or 5V power supply. Secure 2 click communicates with the target microcontroller over SPI and I2C interface, with additional functionality provided by the INT pin on the mikroBUSTM line. The click comes with stackable headers so you can put another click on the top of it.

NOTE: The click comes with stacking headers which allow you to combine it with other clicks more easily by using just one mikroBUSTM socket.

ATAES132A features

The ATAES132A is a high-security, Serial Electrically-Erasable and Programmable Read-Only Memory (Serial EEPROM) providing both authentication and confidential nonvolatile data storage capabilities. Access restrictions for the 16 user zones are independently configured, and any key can be used with any zone. In addition, keys can be used for standalone authentication.

The AES-128 cryptographic engine operates in AES-CCM mode to provide authentication, stored data encryption/decryption, and Message Authentication Codes. Data encryption/decryption can be performed for internally stored data or for small external data packets, depending upon the configuration. Data encrypted by one ATAES132A device can be decrypted by another, and vice versa.

Specifications

Туре	EEPROM
On-board modules	ATAES132A - a cryptographic coprocessor with secure hardware-based key storage from Microchip
Key Features	Crypto element device with secure hardware-based key storage, 512 bit OTP (One Time Programmable) Bits for Fixed Information
Interface	I2C,SPI
Input Voltage	3.3V or 5V
Click board size	M (42.9 x 25.4 mm)

Pinout diagram

This table shows how the pinout on **Secure 2 click** corresponds to the pinout on the mikroBUSTM socket (the latter shown in the two middle columns).

Notes	Pin	Pin Pin mikro*				Pin	Notes
	NC	1	AN	PWM	16	NC	
	NC	2	RST	INT	15	AUTH	Auth signaling
Chip select	CS	3	CS	TX	14	NC	
SPI clock	SCK	4	SCK	RX	13	NC	
Slave data out for SPI	SDO	5	MISO	SCL	12	SCL	I2C clock
Slave data in for SPI	SDI	6	MOSI	SDA	11	SDA	I2C data
Power supply	+3.3V	7	3.3V	5V	10	+5V	Power supply
Ground	GND	8	GND	GND	9	GND	Ground

Programming

Code examples for Secure 2 click, written for MikroElektronika hardware and compilers are available on Libstock.

Code snippet

The following code snippet shows functions that will lock the configuration zone of the device and then output a generated random number.

```
01 //Configuration zone locking
       if (aes132m_execute(AES132_LOCK, 0x02, 0x0000, 0x0000,
02
                           0, 0, 0, 0, 0, 0, 0, txBuffer, rxBuffer)
03
04
                           == AES132_FUNCTION_RETCODE_SUCCESS)
05
       {
06
           LOG( "rnrn Configuration zone locked! " );
07
       }
80
       else
09
       {
10
           LOG( "rnrn Configuration zone locking failed" );
           LOG( " or it is already locked." );
11
12
       }
13
      memset (txBuffer, 0, 84);
14
       memset (rxBuffer, 0, 36);
15 /*
16
       Fourth test - Random number generator
17
       Will only return 0xA5 unless config zone is locked first.
18 */
19
       if (aes132m_execute(AES132_RANDOM, 0x00, 0x0000, 0x0000,
20
                           0, 0, 0, 0, 0, 0, 0, txBuffer, rxBuffer)
21
                           == AES132_FUNCTION_RETCODE_SUCCESS)
22
       {
23
           LOG( "rnrn Generated random number: " );
24
           outputHex (&rxBuffer[2], 16);
25
       }
26
       else LOG( "rnrn Random number generation failed..." );
27
28
      memset (txBuffer, 0, 84);
29
      memset (rxBuffer, 0, 36);
```