ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

Creating the first project in

mikroPascal

ik \Mlkrnilektrnmka
DEVELOPMENT TOOLS | COMPILERS I BOOKS

Copyright © mikroElektronika, January 2012. All rights reserved.

10 OUR VALUED CUSTOMERS

| want to express my thanks to you for being interested in our products and for having

confidence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products
and to constantly improve the performance thereof in order to better suit your needs.

Nebojsa Matic
General Manager

Table of Contents

1. Introduction to mikroPascal PRO for PIC32® 04
2. Hardware ConNECHiONo v vt 05
3.Creatinga New Project 06
Step 1 - Project SettingsS . ..ot 07
Step 2 - Add fileS . .o 10
Step 3-Include Libraries 11
Step 4 - FiNiShiNg ... 12
Blank new project createdt 13
4.00de EXAMPIe . .o 14
5. BUIldINg the SOUCEo 16
6. Changing Project Settings oot 17

7 WAt S MEXE et 18

1. Introduction to mikroPascal PRO for PIC32°

mikroPascal PRO for PIC32® organizes
applications into projects consisting of asingle
project file (file with the .mpp32 extension)
and one or more source files (files with the
.mpas extension). The mikroPascal PRO
for PIC32® compiler allows you to manage
several projects at a time. Source files can be
compiled only if they are part of the project.

= [T

chus 4l 8
©EE 13 ragn Preven

A project file contains:
* Project name and optional description;

= kDt Ty | + pregras LED Bliskeg Py

» Target device in use; b Ton : . T by e | 6
. i N Nt | soiecrn e currrr: con ar digital 170 2% 000 % wees
* Device clock; b T . e
e List of the project source files; Tt = e T -
* Binary files (*.emcl); and L i O - i . J| * B o
Lre Hexnage fo. Meztoge fext 3 =| s ‘_,_\‘_';1 i
e Other files. i - Lo B 554 A B 74080 rovtenst gt acl = b ._@
0 5 7 eelSrirs rop - & DY i s

In this reference guide, we will create a new
project, write code, compile it and test the

183 st Compled 1 \mikooaucal PO bor FC]

results. The purpose of this project is to make @ Main Toolbar @ Messages @ Project Manger

microcontroller PORTB LEDs blink, which will @ Code Explorer @ Code Edit @ n y

be easy to test. p ode kditor ibrary Manager
@ Project Settings @ Image Preview

Page 4

Figure 2-1:
Hardware connection schematics

2. Hardware Connection

Let'smake asimple “"Hello world” example for the selected
microcontroller. First thing embedded programmers
usually write is a simple LED blinking program. So, let's
do that in a few simple lines of Pascal code.

R1
kid K

LED blinking is just turning ON and OFF LEDs that are
connected to desired PORT pins. In order to see the
example in action, it is necessary to connect the target
microcontroller according to schematics shown on Figure
2-1.In the project we are about to write, we will use only

PIC32MX460F512L %

PORTB, so you should connect the LEDs to PORTB only.

Eight LEDs are more then enough for demonstration. You

don't have to connect all 16 PORTB pins. /

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler Step 2: Start up the compiler

Install the mikroPascal PRO for PIC32® compiler from the Product Double click on the compiler icon in the Start menu, or on your desktop
DVD or download it from the MikroElektronika website: to Start up the mikroPascal PRO for PIC32® compiler. The mikroPascal

PRO for PIC32® IDE (Integrated Development Environment) will appear
http://www.mikroe.com/eng/products/view/625/mikropascal-pro-for-pic32/ on the screen. Now you are ready to start creating a new project.

Page 5

3. Creating a New Project

The process of creating a new project is ver r
P & proJ y MNew Project Wizard

simple. Select the New Project option from
the Project menu as shown below. The New
Project Wizard window appears. It can also
be opened by clicking the New Project icon
from the Project toolbar.

Project | Build Run Tools Help
', New Project... Shift+ Cri+N
E® Open Project... Shift+ Ctrl= 0
E% Open Project Group...

Recent Projects »

The New Project Wizard (Figure 3-1) will
guide you through the process of creating

Welcome to the New Project
Wizard

This wizard helps you:

« Create a new project

» Select the device for your project

» Setup device clock
= Add project files

Click Next to continue

a new project. The introductory window of
this application contains a list of actions to
be performed when creating a new project.

I . Baclk Next EP?

. Cancel

%

@ Click Next.

Figure 3-1: Introductory window of the New Project Wizard

Step 1 - Project Settings

First thing we have to do is to specify the
general project information. This is done
by selecting the target microcontroller, it's
operating clock frequency, and of course
- naming our project. This is an important
step, because compiler will adjust the
internal settings based on this information.
Default configuration is already suggested
to us at the begining. We will not change
the microcontroller, and we will leave the
default PIC32MX460F512L as the choice
for this project.

-
MNew Project Wizard

%

Step 1: Project Settings:

MyProject
C:\Users\Public\Documents\Mikroelektronika\mikrot

Project Name:

Project folder:
Device Name: P32MX460F5121 -

Device Clock: 10.000000 MHz

Enter project name, project folder, select device name and enter a device dock
(for example: 96.235).

MNote: Project name and project folder must not be left empty.

Browse

4 Back Next 5

Cancel

Figure 3-2: You can specify project name, path, device and clock in the first step

Step 1 - Project Settings

If you do not want to use the suggested path
for storing your new project, you can change
the destination folder. In order to do that,
follow a simple procedure:

@ Click the Browse button of the Project
Settings window to open the Browse
for Folder dialog.

@ Select the desired folder to be the
destination path for storing your new
project files.

@ Click the OK button to confirm your
selection and apply the new path.

MNew Project Wizard

Browse For Folder

4 J'i -Music

B My Music

Puhlic busic

p |El My Documents
4 || Public Documents
I+ 1. FinalBuilder 7 Projects
I+ L. Mikroelektronika
1. RAD Studio

| |-.. ! Woric+—@

| Make New Folder |

(

ok & || cancl

Il

L

Cancel

Figure 3-3: Change the destination folder using Browse For Folder dialog

Step 1 - Project Settings

Once we have selected the destination
project folder, let's do the rest of the project
settings:

o)

@

03)

Enter the name of your project. Since
we are going to blink some LEDs,
it's appropriate to call the project
“LedBlinking”

For this demonstration, we will use the
default 80MHz clock (PLL enabled).
Clock speed depends on your target
hardware, and whether you are
using PLL or not. But however you
configure your hardware, make sure to
specify the exact clock (Fosc) that the
microcontroller is operating at.

Click the OK button to proceed.

L

-
MNew Project Wizard

Step 1: Project Settings:

Project Name: [E==[lLA00
Project folder: C:\Users\Public\Documents\Worl, Browse

P32ZMX460F512L -

£ 50.000000 MHz

Enter project name, project folder, select device name and enter a device dodk
(for example: 96.235).

Device Name:

Device Clock:

Mote: Project name and project folder must not be left empty.

4@ Back Next FB‘?

Cancel

Figure 3-4: Enter project name and change device clock speed if necessary

Step 2 - Add files

This step allows you to include additional files
that you need in your project: some headers
or source files that you already wrote, and
that you might need in further development.
Since we are building a simple application, we
won't be adding any files at this moment.

@ Click Next.

-
MNew Project Wizard

L

Step 2: Select files you want to add to project.
Add File To Project:
@ Add
Remove
File Name
Remove All
@ Back || Next FPI | Cancel

Figure 3-5: Add existing headers, sources or other files if necessary

Step 3 - Include Libraries

Following step allows you to quickly set
whether you want to include all libraries in
your project, or not. Even if all libraries are
included, they will not consume any memory
unless they are explicitely used from within
your code. The main advantage of including
all libraries is that you will have over 500
functions available for use in your code
right away, and visible from Code Assistant
[CTRL+Space]. We will leave this in default
configuration:

@ Make sure to leave “Include All”
selected.

@ Click Next.

r 7 B
Mew Project Wizard M

Step 3: Select initial state for library manager:

Indude Libraries
@) Indude All (Default)

7 Indude None (Advanced)

Selecting all libraries is recommended for beginners.

Selecting libraries manually using Library Manager -
{recommended for advanced users) results in faster compilation. Library Manager Help

4@ Back Next = f | Cancel
A

Figure 3-6: Include all libraries in the project, which is a default configuration.

Step 4 - FiniShing rF-.IewPrcject Wizard M1

After all configuration is done, final step
allows you to do just a bit more.

Step 4: You have successfully created a new project. Click "Finish"” to close a wizard.

@ There is a check-box called “Open Edit ?
Project window to set Configuration o
bits” at the final step. Edit Project is ‘O
a specialized window which allows you
to do all the necessary oscillator and
PLL settings, as well as to set other
configuration bits. We made sure that = ——
everything is described in plain English, Checking "Open Edit Project window” will open "Edit project form” after
50 you will be able to do the settings closing this wizard, This enables you to set device configurations bits,

without having to open the datasheet.
Anyway, since we are only building a

simple application, we will leave it at ?
default configuration (HS oscillator with 4 Back Finish Cancel

PLL enabled). Therefore, leave the
checkbox unchecked.

Open Edit Project window to set Configuration bits

L

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

@ Click Finish.

Blank new project created

New project is finally created. A new source
file called “LedBlinking.mpas” is created and
it contains the begin. . .end. block, which
will hold the program. You may notice that
project is configured according to the settings
done in the New Project Wizard.

Mame: P32Mx4B0F512L

=E MCU Clack

Frequency: 20.000000; MHz

id/ Debugaer Type

C322 10+ C

8]
[Bie Bt Yo Brpect Bobd Bun Zoc
iz Pt a0

- 1% L AR [T]

i progras LedSlinwisg;

-
g

1 program Led.ElinE

i { Declarations

begin

WTETL | et g (] - kg (B

Figure 3-8: New blank project is created with your configuration

Page 13

4. Code Example

Time has come to do some coding. First thing
we need to do is to disable analog function of
PORTB pins, so they act as digital only:

// Configure AN pins as digital I/O
AD1PCFG := OxFFFF;

Now we have to initialize PORTB to act as
digital output. TRISB register, associated with
PORTB, is used to set whether each pin acts
as input or output.

// set PORTB to be digital output
TRISB := 0;

LATB register is used instead of PORTB for
digital output. We can now initialize it with
logic zeros on every pin:

// Turn OFF LEDs on
LATB := 0;

PORTB

Finally, in a while loop we will toggle the
PORTB value, and put a 1000 ms delay, so
the blinking is not too fast (see Figure 4-1).

LedBlinking.mpas - source code

1 program LedBlinking;
2 begin
3 // Configure analog pins as digital I/O
4 AD1PCFG := OxFFFF;
5
6 // set PORTB to be digital output
7 TRISB := 0;
8
9 // Turn OFF LEDs on PORTB
10 LATB := 0;
11
12 while TRUE do
13 begin
14 // Toggle LEDs on PORTB
15 LATB := not LATB;
16
17 // Delay 1000 ms
18 Delay ms (1000);
19 end;
20 end.

Figure 4-1: Complete source code of the PORTB LED blinking

I mikroPascal PRO for PIC32 v.2.1.0 - CAU ic\Doc inking.mpp32 - e — =l |
File Edit View Project Build Run Tools Help
PRy B MRS S 0 2 H RS S DB E AT Dl
2 Code Explorer (55| [LedBliking. mpas Froject Manager (1/1] - LedBlinking.mp... 5 2|
¥ il A L SR LELIESEEEY Y
et lirks | . . |5 B LedBlinking.mpp32 |
{ Declarations section } Il &
Image links £ [Sources
Active Commenls) | | LedBlinking.mpas
Inchude =i begin Sinaries
Bitems // Configure analog pins as digital I/0 I) Project Level Defines
Farwards AD1ECEG := OxFFFE; 1 Image Fies
Types EEPROM Files
- Globals // set PORTB to be digital ountput ” [Active Comments Files
B Functions 10 TRISB := 0; || B [OutputFiles
Il [Other Files
EPmied:Se _:uuz:'.v.- = @ // Twurn OFF LEDs on PORTB I |
e, =it |
B Davice S e .||jL\bvaryManager 2 Project Explorer |
— - while TRUE do & annl ‘J LibStoce ‘
Name: P32MXAB0FS1ZL -) == !
begin - mikroE £
// Toggle LEDs on PORTB ADC
EQMEU Clock LATE := not LATE; BitReverseComplex
K Button
R
20 // Delay 1000 ms) CAN_SP1
Frequency:| 80.000000] MH. i
: Delay ms(1000): i Compact_Flash |
o | Compact_Flash_FAT15 E
23 end Conversions
= Buid/ Debugger Type ” e
Build T H . H [§
el) Figure 4-2: This is how the code looks e
Release (1 ICD Debug I EPSON_S1D13700
S written in compiler code editor window I FFT
i " Il FirRadix
@ Software) mikialCD I g
— — L &= Gled
_Me_ssagas’m‘ Gled_Fonts
2c
TirRadix
Line Message Text Unit Keypadxd
Led
Led_Constants
Manchester
Matrices
MemManager
Mmc
o m Mmc_FAT1S =
23:38 Insert C:\Users\Public\Doc Workil

Page 15

5. Building the Source

When we are done writing our first
LedBlinking code, we can now build
the project and create a .HEX file
which can be loaded into our target
microcontroller, so we can test the
program on real hardware. “Building”
includes compilation, linking and

Build | Run Tools Help

| % Build Ctel+F3

Rebuitd All Sources Alt+F9

2

Stop Build All Ctrl+F12

Ctrl=F11

% Build + Program

Date modified

Type

Size

optimization which are done automatically. Build your code by clicking
on the % icon in the main toolbar, or simply go to Build menu and
click Build [CTRL+F9]. Message window will report the details of the
building process (Figure 5-2). Compiler automatically creates necessary
output files. LedBlinking.hex (Figure 5-1) is among them.

Messages I@ Quick Converter |

rrrEErErrE

Name
|| LedBlinking.asm 1/22/201210:20 AM ASM File 1KB
|| LedBlinking.bri 1/22/201210:1 AM BRK File 1KB
|| LedBlinking.cfg 1/22/201210:21 AM CFG File 1KB
|| LedBlinking.dbg 1/22/201210:20 AM DBG File 102 KB
|£ LedBlinking 1/22/201210:1 AM Adobe lllustrator 5... 157 KB
|| LedBlinking.dit 1/22/201210:20 AM DLT File 4 KB
|| LedBlinking.emcl 1/22/201210:20 AM EMCL File 14 KB
| || LedBlinking.hex 1/22/201210:20 AM HEX File 2 KB
\; LedBlinking 1/22/201210:20 AM Text Document 3KB
|| LedBlinking.lst 1/22/201210:20 AM LST File 8KB
2 LedBlinking.mpas 1/22/201210:20 AM mikroPascal sourc.., 1KB
| LedBlinking.mpas 1/22/201210:21 AM Configuration sett... 1KE
E LedBlinking.rmpp32 1/22/201210:21 AM mikroPascal proje... 2KB
= LedBlinking.mpp32_callerta.., 1/22/201210:20 AM Text Document 1KB
;‘ LedBlinking.user 1/22/201210:21 AM Text Document O KB

Figure 5-1: Listing of project files after building is done

| Errors \Warnings Hints

Line Message Mo, Message Text Unit i
o 1144 Static RAM (bytes): 64 Dynamic RAM (bytes): 32765 Static RAM (bytes): 64 Dyn

0 1144 Used ROM (bytes): 484 (0%) Free ROM (bytes): 523804 (100%) Used ROM (bytes): 484 (0%

a 145 Project Linked Successfully LedBlinking, mpp32 s
0 140 Linked in 749 ms |_.
1] 141 Project 'LedBlinking. mpp32' completed: 1108 ms |'_
] 103 Finished successfully: 22 Jan 2012, 10:23:04 LedBlinking. mpp32 [=
| m] 3
23:38 Insert Compiled CA\Users\Public\Documents\Work\LedBlinking.mpas

Figure 5-2: After the successful compilation and linking, the message window should look something like this

)

If you need to change the target microcontroller or clock speed, you don't have to go through the new project wizard all over again. This can be
done quickly in the Edit Project window. You can open it using Project->€Edit Project [CTRL+SHIFT+E] menu option.

02

8 = B
Edit Project =
PLL Input Divider 2| MCU and Oscllator
|2« Divider [-
PLL Multiplier MCU Name P32MX460F512L &
[20)(Multiplier vJ
Oscillator Frequency [MHz] -@
USE PLL Input Divider
12« Divider -
Interrupt Contral:
USHB T Eedile 2 17} Single Vector Base Address
Disbled and Bypessed ™) Use SRS EBASE: Ox SFCD 1000
System PLL Output Clock Divider =
‘PLL Divide by 1 v} @) Multi Vector
= = Vector Spacing (VS}_‘._ SRS Priority Level:
Oscillator Selection Bits - 2 SRS Priority 7
[anafy Osc wyPLL (XT+HS+ECHPLL) VJ
dary Enable Load Scheme
[Enabled '] B_ulld Type : Heap
@ Release @) ICD Debug Size @ Save Scheme
Internal/External Switch Over
‘ Enabled 'J Configuration Registers
Primary Osdillator Configuration DEVCFEZ :$1FCO2FF4 : 0x00003751 Default
{xToscmde v} DEVCFGL -$1FCOZFFS - 0x001485A3
DEVCFGOD :$1FCOZFFC : Ox110FF00B
CLKO Output Signal Active on the 05CO Pin
[Enabled -
Peripheral Clock Divisor s
Pb_Clkis Sys. /L = General Output Settings ... =i

Figure 6-1: Edit Project Window

@

@

To change your MCU, just select the
desired microcontroller from the
dropdown list.

To change vour settings enter the
oscillator value and adjust configu-
ration register bits using drop-down
boxes.

Several most commonly used settings
can be loaded using the provided
oscillator “schemes”. Load the desired
scheme by clicking the Load Scheme
button.

Select whether to build a Debug
HEX, which is necessary for hardware
debugging, or a final Release HEX.

e

=4 Library Manager| 2 Project Explorer |

|':;.|. C:\Users\PuincDommentsMh’oekktmﬂil} |

7. What's next?

More examples

mikroPascal PRO for PIC32® comes with 80 examples which demonstrate a variety of

| 1]

&l |, Development Systems -

B L LvazaMX ve

ﬂ . Button
- || Caleulator (TFT)

features. They represent the best starting point when developing a new project. You will B cAN
find projects written for mikro€Elektronika development boards, additional boards, internal 'ril . fp:c:)
. . . 3 i Joys
MCU modules and other examples. This way you always have a starting point, and don't @) LCD (COG 2x16)
have to start from scratch. In most cases, you can combine different simple projects to B | LedBlinking

create a more complex one. For example, if you want to build a temperature datalogger, you
can combine temperature sensor example with MMC/SD example and do the job in much
less time. All projects are delivered with a working .HEX files, so you don’t have to buy a
compiler license in order to test them. You can load them into your development board right
away without the need for building them.

Community

If you want to find answers to your questions on many interesting topics we invite you to visit
our forum at http://www.mikroe.com/forum and browse through more than 150 thousand
posts. You are likely to find just the right information for you.

On the other hand, if you want to download more free projects and libraries, or share your own

@

-

- ﬂ LedBlinking. mpp32
P Led Curtain.mpp32
| Mapping (TFT)
B L MMC
: |\ Serial Flash
|, Simple Maze (TFT)
, Temperature Sensor
, TFT
UARTA
@), UARTB
B) UsB
. mikroMMB for PIC32
PIC32Mx4_MMB
) PIC32MXT_MMB
Digital Signal Processing

g Y

|

| Extra Boards

m

code, please visit the Libstock website http://www.libstock.com. With user profiles, you can
get to know other programmers, and subscribe to receive notifications on their code.

Figure 7-1: Project explorer window
enables you to easily access provided
examples and load them quickly

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other
copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or transmit-
ted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for
distribution. Any modification of this manual is prohibited.

MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions
of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika,
its directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for loss of business profits
and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised
of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault - tolerant nor designed, manufactured or intended for use or resale as on - line control equipment in hazardous
environments requiring fail - safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, di-
rect life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, LV-32MX v6™, mikromedia for PIC32™, multimedia
for PIC32MX7™ and MMB for PIC32MX4™ are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective companies.

All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used
for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.

www.mikroe.com.

www.mikroe.com/esupport

office@mikroe.com

Mikro€Elektronika,

Creating the first project in
mikroPascal PRO for PIC32 ver. 1.00

0"100000"018330

	Contact us

