
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Copyright © mikroElektronika, December 2011. All rights reserved.

Page 2

mikroBasic PRO for ARM® organizes

applications into projects consisting of a

single project file (file with the .mbpar

extension) and one or more source files (files

with the .c extension). The mikroBasic PRO

for ARM® compiler allows you to manage

several projects at a time. Source files can be

compiled only if they are part of the project.

In this reference guide, we will create a new

project, write code, compile it and test the

results. The purpose of this project is to make

microcontroller PORTA LEDs blink, which will

be easy to test.

A project file contains:

• Project name and optional description;

• Target device in use;

• Device clock;

• List of the project source files;

• Binary files (*.emcl); and

• Other files.

1. Introduction to mikroBasic PRO for ARM

05

06

07

01 04 07

02 05 08

03 06

Main Toolbar

Code Explorer

Project Settings

Messages

Code Editor

Image Preview

Project Manger

Library Manager

03

02

04

01

08

Page 3

Let’s make a simple “Hello world” example for the

selected microcontroller. First thing embedded

programmers usually write is a simple LED blinking

program. So, let’s do that in a few simple lines of

Basic code.

LED blinking is just turning ON and OFF LEDs that

are connected to desired PORT pins. In order to see

the example in action, it is necessary to connect

the target microcontroller according to schematics

shown on Figure 2-1. In the project we are about

to write, we will use only PORTA, so you should

connect the LEDs to PORTA only.

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler

Install the mikroBasic PRO for ARM® compiler from the Product DVD

or download it from the MikroElektronika website:

http://www.mikroe.com/eng/products/view/753/mikrobasic-pro-for-arm/

Step 2: Start up the compiler

Double click on the compiler icon in the Start menu, or on your desktop

to Start up the mikroBasic PRO for ARM® compiler. The mikroBasic

PRO for ARM® IDE (Integrated Development Environment) will appear

on the screen. Now you are ready to start creating a new project.

2. Hardware Connection
VCC-3.3

AVCC

3
0

2
9

2
8

2
7

3
4

3
3

58

57

56

55

54

53

52

4
6

3
6

3
5

4
2

4
3

4
4

4
5

3
7

5
0

9

4
8

4
9

11

12

3
2

72

69

68

67

66

65

64

63

4

3

7
8

7
7

24

23

18

17

16

15

14

13

5

6

7

8

10

7
9

8
0

1

2

22

21

20

19

62

61

60

59

3
8

3
9

4
0

4
1

4
7

71

3
1

51

70

2
6

25

7
6

75

74

73

LM3S9B95

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

P
A
7

P
A
6

E
R
B
IA
S

V
D
D

P
F
4

P
F
5

PE5

PE4

LDO

VDD

GND

VDD

PB1/USB0VBUS

VDD

V
D
D

T
X
O
P

PJ4

PJ5

PJ6

PJ7

G
N
D

T
X
O
N

P
B
5

P
B
6

P
B
7

V
D
D

V
D
D
C

P
J
1

P
H
2

P
H
3

GNDA

VDDA

P
D
5

P
D
4

P
E
3

P
E
2

G
N
D

P
B
4

PD2

P
A
2

PC6

PC7

GND

VDD

PG0

PG1

USB0DP

USB0DM

NC

PB3/I2C0SDA

PJ0

PD1

PD0

V
D
D
C

P
D
6

P
D
7

PE7

PE6

P
A
1

P
A
0

PC4

PC5

O
S
C
1

P
J
3

PB0/USB0ID

PF2

P
F
0

O
S
C
0

GND

P
J
2

R
X
IN

MDIO

PF1

P
H
0

XTALNPHY

XTALPPHY

PH7

P
G
7

R
X
IP

PF3

RST

P
H
1

P
A
5

P
A
4

P
A
3

P
A
7

P
A
6

P
A
2

P
A
1

P
A
0

P
A
5

P
A
4

P
A
7

P
A
6

P
A
5

P
A
4

P
A
3

P
A
2

P
A
1

P
A
0

P
A
3

PD3

GND

PH6

PH5

PB2/I2C0SCL

P
C
2

P
H
4

USB0BIAS

PE0

PE1

P
C
3

P
C
1

P
C
0

V
D
D

G
N
D

U1

R61

9K1
E9

10uF

VCORE

VCORE

R1

4K7

R5

4K7

R2

4K7

R6

4K7

R3

4K7

R7

4K7

R4

4K7

R8

4K7

LD0

LED

LD4

LED

LD1

LED

LD5

LED

LD2

LED

LD6

LED

LD3

LED

LD7

LED

VCC3

VCC3

Figure 2-1:

Hardware

connection

schematics

Page 4

The process of creating a new project is very

simple. Select the New Project option from

the Project menu as shown below. The New

Project Wizard window appears. It can also

be opened by clicking the New Project icon

from the Project toolbar.

The New Project Wizard (Figure 3-1) will

guide you through the process of creating

a new project. The introductory window of

this application contains a list of actions to

be performed when creating a new project.

Click Next.

3. Creating a New Project

Figure 3-1: Introductory window of the New Project Wizard

01

01

Page 5

First thing we have to do is to specify the

general project information. This is done

by selecting the target microcontroller, it’s

operating clock frequency, and of course

- naming our project. This is an important

step, because compiler will adjust the

internal settings based on this information.

Default configuration is already suggested

to us at the begining. We will not change the

microcontroller, and we will leave the default

LM3S9B95 as the choice for this project.

Step 1 - Project Settings

Figure 3-2: You can specify project name, path, device and clock in the first step

Page 6

If you do not want to use the suggested path

for storing your new project, you can change

the destination folder. In order to do that,

follow a simple procedure:

Step 1 - Project Settings

Figure 3-3: Change the destination folder using Browse For Folder dialog

01

01

02

03 03

02

Click the Browse button of the Project

Settings window to open the Browse

for Folder dialog.

Select the desired folder to be the

destination path for storing your new

project files.

Click the OK button to confirm your

selection and apply the new path.

Page 7

Once we have selected the destination

project folder, let’s do the rest of the project

settings:

Step 1 - Project Settings

Figure 3-4: Enter project name and change device clock speed if necessary

01

02

03

03

01

02

Enter the name of your project. Since

we are going to blink some LEDs,

it’s appropriate to call the project

“LedBlinking”

For this demonstration, we will use

the default 16MHz clock. Clock speed

depends on your target hardware, and

whether you are using PLL or not. But

however you configure your hardware,

make sure to specify the exact clock

(Fosc) that the microcontroller is

operating at.

Click the OK button to proceed.

Page 8

This step allows you to include additional files

that you need in your project: some headers

or source files that you already wrote, and

that you might need in further development.

Since we are building a simple application, we

won’t be adding any files at this moment.

Step 2 - Add files

01

Figure 3-5: Add existing headers, sources or other files if necessary

Click Next.01

Page 9

Following step allows you to quickly set

whether you want to include all libraries in

your project, or not. Even if all libraries are

included, they will not consume any memory

unless they are explicitely used from within

your code. The main advantage of including

all libraries is that you will have over 500

functions available for use in your code

right away, and visible from Code Assistant

[CTRL+Space]. We will leave this in default

configuration:

Step 3 - Include Libraries

02

01

Figure 3-6: Include all libraries in the project, which is a default configuration.

01

02

Make sure to leave “Include All”

selected.

Click Next.

Page 10

After all configuration is done, final step

allows you to do just a bit more.

Step 4 - Finishing

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

02

01
01 There is a check-box called “Open Edit

Project window to set Configuration
bits” at the final step. Edit Project is a

specialized window which allows you to

do all the necessary oscillator and PLL

settings. We made sure that everything

is described in plain English, so you

will be able to do the settings without

having to open the datasheet. Anyway,

since we are only building a simple

application, we will leave it at default

configuration (internal 16MHz oscillator

with PLL disabled). Therefore, leave

the checkbox unchecked.

Click Finish.02

Page 11

New project is finally created. A new source

file called “LedBlinking.mbas” is created

and it contains the main: function, which will

hold the program. You may notice that project

is configured according to the settings done in

the New Project Wizard.

Blank new project created

Figure 3-8: New blank project is created with your configuration

Page 12

Time has come to do some coding. mikroBasic

PRO for ARM® has the unique libraries that

enable you to do complicated tasks in a

single line of code. Built-in GPIO library

enables you to set configure each PORT and

enable pins that you need, without worrying

about complex procedure that this operation

requires. To demonstrate this, we will write

our first line of code:

Once we have enabled PORTA to act as digital

output, we can now initialize PORTA with

logic zeros on every PORT pin:

Finally, in a while() loop we will toggle the

PORTA value, and put a 1000 ms delay, so the

blinking is not too fast.

program LedBlinking

‘ Declarations section

main:

‘ Main program

 ‘ Set PORTA as digital output

 GPIO_Digital_Output(@GPIO_PORTA,

 _GPIO_PINMASK_ALL)

 ‘ Set PORTA initial value to zero

 GPIO_PORTA_DATA = 0

 while TRUE

 ‘ Toggle PORTA

 GPIO_PORTA_DATA = NOT GPIO_PORTA_DATA

 ‘ Delay 1000 ms

 Delay_ms(1000)

 wend

end.

‘ Set PORTA as digital output

GPIO_Digital_Output(

 @GPIO_PORTA,

 _GPIO_PINMASK_ALL)

‘ Set PORTA initial value to 0

GPIO_PORTA_DATA = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

LedBlinking.mbas - source code4. Code Example

Figure 4-1: Complete source code of the PORTA LED blinking

Page 13

Figure 4-2: This is how the code looks

written in compiler code editor window

Page 14

When we are done writing our first

LedBlinking code, we can now build

the project and create a .HEX file

which can be loaded into our target

microcontroller, so we can test the

program on real hardware. “Building”

includes compilation, linking and

optimization which is all done automatically. Build your code by clicking

on the icon in the main toolbar, or simply go to Build menu and

click Build [CTRL+F9]. Message window will report the details of the

building process (Figure 5-2). Compiler automatically creates necessary

output files. LedBlinking.hex (Figure 5-1) is among them.

5. Building the Source

Figure 5-2: After the successful compilation and linking, the message window should look something like this

Figure 5-1: Listing of project files after building is done

Page 15

If you need to change the target microcontroller or clock speed, you don’t have to go through the new project wizard all over again. This can be

done quickly in the Edit Project window. You can open it using Project->Edit Project [CTRL+SHIFT+E] menu option.

6. Changing Project Settings

Figure 6-1: Edit Project Window

01

02

02

03

01

02

03

04

To change your MCU, just select the

desired microcontroller from the

dropdown list.

To change your oscillator settings

enter the oscillator value and adjust

oscillator configuration registers

using drop-down boxes.

Several most commonly used

oscillator settings can be loaded using

the provided oscillator “schemes”.

Load the desired scheme by clicking

the Load Scheme button.

Select whether to build a Debug

HEX, which is necessary for hardware

debugging, or a final Release HEX.

03

If you want to learn more about our products, please

visit our website at www.mikroe.com. If you are

experiencing some problems with any of our products or

just need additional information, please place your ticket

at www.mikroe.com/esupport If you have any questions,

comments or business proposals, do not hesitate to

contact us at office@mikroe.com

Designed by

MikroElektronika,

December 2011.

	Contact us

