mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

= 1200 A

= 3300 V

IGBT Module Single switch

IGBT

Symbol

 V_{CES}

 $\boldsymbol{V}_{\text{GES}}$

 I_{C80}

I_{CM}

Short Circuit SOA Capability Square RBSOA

Conditions

 $V_{GE} = 0 V$

 $T_c = 80^{\circ}C$

 $t_p = 1 \text{ ms}; T_c = 80^{\circ}C$

Maximum Ratings

V

V

А

А

3300

± 20

1200

2400

V_{CE(sat) typ.} **= 3.1 V**

Features

C80

V_{CES}

- NPT³ IGBT
- Low-loss
- Smooth switching waveforms for good EMC
- Industry standard package
 High power density
- AISiC base-plate for high power cycling capacity
- AIN substrate for low thermal resistance

Typical Applications

- AC power converters for
- industrial drives
- windmills
- traction
- LASER pulse generator

t _{sc}	$V_{CC} = 2500 \text{ V}; V_{CEM CHIP} = \le 3300 \text{ V}; V_{GE} \le 15 \text{ V}; T_{VJ} \le 125^{\circ}\text{C}$			10	μs
Symbol	Conditions $(T_{yJ} = 25^{\circ})$	Cha C, unless o min.	aracter otherwi typ.	istic Va se speci max.	l ues fied)
V _{CE(sat)} ①	$I_{c} = 1200 \text{ A}; V_{GE} = 15 \text{ V}; T_{VA} = 25^{\circ}\text{C}$ $T_{VA} = 125^{\circ}\text{C}$		3.1 3.8		V V
V _{GE(th)}	$I_{c} = 240 \text{ mA}; V_{ce} = V_{Ge}$	6		8	V
I _{ces}	V_{CE} = 3300 V; V_{GE} = 0 V; T_{VJ} = 125°C			120	mA
I _{GES}	$V_{ce} = 0 \text{ V}; V_{ge} = \pm 20 \text{V}; \text{T}_{vJ} = 125^{\circ}\text{C}$			500	nA
E _{on}	\int Inductive load; T _{VJ} = 125°C; V _{GE} = ±15 V;		1750		mJ
E _{off}	$\int V_{cc} = 1800V; I_{c} = 1200A; R_{g} = 1\Omega; L_{\sigma} = 100n$	Н	2000		mJ
R _{thJC}				0.0085	K/W

① Collector emitter saturation voltage is given at chip level

IXYS reserves the right to change limits, test conditions and dimensions.

Diode					
Symbol	Conditions	Maximum	Ratings		
I _{F80}	$T_c = 80^{\circ}C$	1200	А		
I _{FSM}	$V_{R} = 0 \text{ V}; \text{T}_{VJ} = 125^{\circ}\text{C}; \text{t}_{p} = 10 \text{ ms}; \text{ half-sinewave}$	12000	А		

Symbol	Conditions	Cha	aracter	istic Values
		min.	typ.	max.
V _F 2	$I_{F} = 1200 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.30 2.35	V V
I _{RM} t _{rr} Q _{RR} E _{rec}	$\left. \begin{array}{l} V_{\rm CC} = 1800 \; V; \; I_{\rm C} = 1200 \; A; \\ V_{\rm GE} = \pm 15 \; V; \; R_{\rm G} = 1 \; \Omega; \; T_{\rm VJ} = 125^{\circ} C \\ {\rm Inductive \; load}; \; L_{\sigma} = 100 n H \end{array} \right. \label{eq:VCC}$		1680 800 1320 1740	Α ns μC mJ
R _{thJC}				0.017 K/W

thuc					
^② Forward vo	Itage is given at chip level				
Module					
Symbol	Conditions		Ν	<i>l</i> aximu	m Rating
T _{JM}	max junction tempera	ature		+12	5 🥒 °(
T _v	Operatingtemperatur	9	-4	0+12	5 °(
stg	Storage temperature		-4	0+12	
M _d	Mounting torque Ba	ase-heatsink, M6 screws		4 - (Nr
	Ma	ain terminals, M8 screws		8 - 10) Nr
	A 1111				
Symbol	Conditions		Cha	tvp	stic Value
				typ.	max.
d _A	Clearance distance	terminal to base	26 26		m
d	Surface croopede	terminal to base	20		
u _s	distance	terminal to terminal	56 56		m
V	$1 \min f = 50 \text{ Hz}$	10	500		
VISOL	1 min, 1 = 50 HZ		500		\ \
V _E	Partial discharge exti	nction voltage	100		
	$f = 50 \text{ Hz}, \text{ Q}_{PD} \leq 10 \text{ pc}$	5	100		
СТІ	Comperative tracking	index	600		
L _o	Module stray inducta	nce, C to E terminal		18	n
R _{term-chip} *	Resistance terminal t	o chip		0.12	m
R _{thCH}	per module; λ grease	e = 1 W/m∙K		0.006	K/
Weight				1500	

*) V = V_{CE(sat)} + R_{term-chip} · I_C resp. V = V_F + R_{term-chip} · I_F

405

Outline drawing

