

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

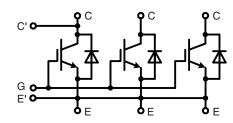
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



IGBT Module Single switch

Short Circuit SOA Capability Square RBSOA

 I_{C80} = 1500 A V_{CES} = 2500 V $V_{CE(sat) \text{ typ.}}$ = 2.7 V

IGBT		,4
Symbol	Conditions	Maximum Ratings
V _{CES}	$V_{GE} = 0 V$	2500 V
V_{GES}		± 20 V
I _{C80}	$T_C = 80^{\circ}C$	1500 A
I _{CM}	$t_p = 1 \text{ ms; } T_C = 80^{\circ}\text{C}$	3000 A
t _{sc}	$V_{CC} = 1700 \text{ V}; V_{CEM CHIP} = \le 2500 \text{ V}; \\ V_{GE} \le 15 \text{ V}; T_{VJ} \le 125^{\circ}\text{C}$	10 µs

Symbol	Conditions $(T_{VJ} = 25^{\circ}C)$	C, unless oth	nerwise	stic Val e speci max.	
V _{CE(sat)} ①	$I_{C} = 1500 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.7 3.3		V
$V_{\text{GE(th)}}$	$I_C = 240 \text{ mA}$; $V_{CE} = V_{GE}$	6		7.5	V
I _{CES}	$V_{CE} = 2500 \text{ V}; V_{GE} = 0 \text{ V}; T_{VJ} = 125^{\circ}\text{C}$			100	mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}; T_{VJ} = 125^{\circ}\text{C}$			500	nA
E _{on}	$\int \text{Inductive load; } T_{VJ} = 125^{\circ}\text{C; } V_{GE} = \pm 15 \text{ V;}$		1400		mJ
E _{off}	$\int V_{CC} = 1200V; I_C = 1500A; R_G = 1.5\Omega; L_\sigma = 100$	$I_{C} = 1500A; R_{G} = 1.5\Omega; L_{\sigma} = 100nH$			mJ
R _{thJC}				0.008	K/W

 $[\]ensuremath{\mathfrak{D}}$ Collector emitter saturation voltage is given at chip level

Features

- NPT3 IGBT
- Low-loss
- Smooth switching waveforms for good EMC
- Industry standard package
- High power density
- AlSiC base-plate for high power cycling capacity
- AIN substrate for low thermal resistance

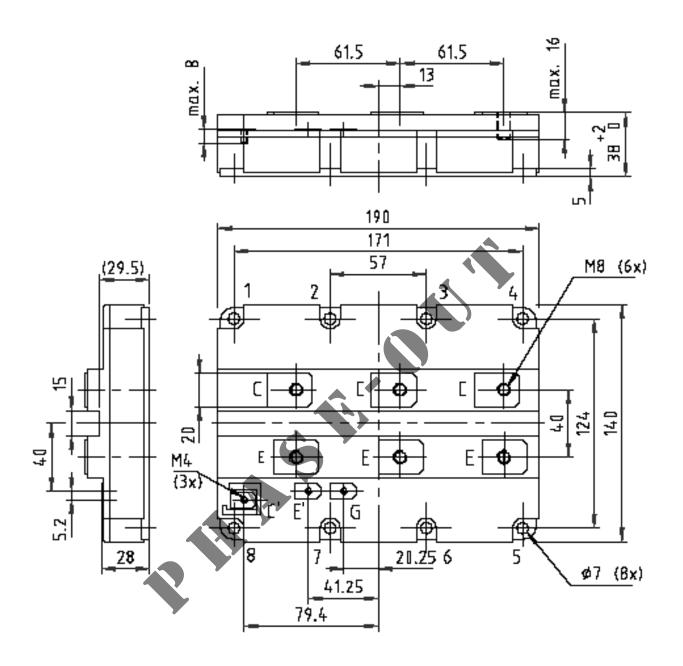
Typical Applications

- AC power converters for
- industrial drives
- windmills
- traction
- LASER pulse generator

Diode			
Symbol	Conditions	Maximum	Ratings
I _{F80}	$T_C = 80^{\circ}C$	1500	А
I _{FSM}	$V_R = 0 \text{ V}; T_{VJ} = 125^{\circ}\text{C}; t_p = 10 \text{ ms}; \text{half-sinewave}$	13000	Α

Symbol	Conditions	Characteristic Values			
			typ.	max.	
V _ 2	$I_{F} = 1500 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$		2.30		V
	$T_{VJ} = 125^{\circ}C$		2.35		V
I _{RM}	$V_{CC} = 1200 \text{ V}; I_C = 1500 \text{ A};$		1100		Α
	$V_{GE} = \pm 1500 \text{ V}, R_{G} = 1500 \text{ V},$ $V_{GE} = \pm 15 \text{ V}; R_{G} = 1.5 \Omega; T_{VJ} = 125 ^{\circ}\text{C}$		1500		ns
Ü,	Inductive load; $L_a = 100 \text{ nH}$		925		μC
t _{rr} Q _{RR} E _{rec}) maddive iedd, 2 ₆ = 100mi		800		mJ
R _{thJC}				0.016	K/W

② Forward voltage is given at chip level


Module				
Symbol	Conditions		Maximum F	Ratings
T _{JM} T _{VJ} T _{stg}	max junction tem Operating temperations	rature	+150 -40+125 -40+125	0° 0° 0°
V _{ISOL}	50 Hz		5000	٧~
M _d	Mounting torque	Base-heatsink, M6 screws Main terminals, M8 screws		Nm Nm

Symbol	Conditions	Characteristic Value			stic Values
			min.	typ.	max.
d _A	Clearance distance	terminal to base	23		mm
		terminal to terminal	19		mm
d_s	Surface creepage	terminal to base	33		mm
	distance	terminal to terminal	33		mm
L _e	Module stray inducta	nce, C to E terminal		10	nH
R _{term-chip} *	Resistance terminal to chip		0.12	m $Ω$	
R _{thCH}	per module; λ grease	e = 1 W/m•K		0.006	K/W
Weight				1500	g

^{*)} $V = V_{\text{CE(sat)}} + R_{\text{term-chip}} \cdot I_{\text{C}}$ resp. $V = V_{\text{F}} + R_{\text{term-chip}} \cdot I_{\text{F}}$

Outline drawing

Note: all dimensions are shown in mm