

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

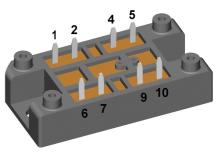
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

XPT IGBT Module

MIXA150R1200VA

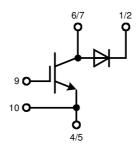
preliminary

1200 V


I _{C25} 220 A

V_{CE(sat)} = 1,8 V

Boost Chopper


Part number

MIXA150R1200VA

Backside: isolated

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
 - low EMI
 - square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
- SONIC™ diode
 - fast and soft reverse recovery
 - low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: V1-A-Pack

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 17 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

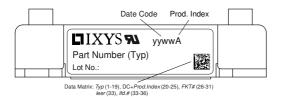
- to perform joint risk and quality assessments; the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20151102b

preliminary


IGBT				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			1200	V
V _{GES}	max. DC gate voltage					±20	V
V_{GEM}	max. transient gate emitter voltage					±30	V
I _{C25}	collector current		$T_{C} = 25^{\circ}C$			220	Α
I _{C80}			$T_C = 80$ °C			150	Α
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			695	W
V _{CE(sat)}	collector emitter saturation voltage	$I_{C} = 150A; V_{GE} = 15 V$	$T_{VJ} = 25^{\circ}C$		1,8	2,1	V
			$T_{VJ} = 125 ^{\circ}\text{C}$		2,1		٧
V _{GE(th)}	gate emitter threshold voltage	$I_{C} = 6 \text{ mA}; V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	5,4	5,9	6,5	V
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$			0,5	mA
			T _{VJ} = 125°C		1		mΑ
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 \text{ V}$				500	nA
Q _{G(on)}	total gate charge	$V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$	= 150 A		470		nC
t _{d(on)}	turn-on delay time)			70		ns
t _r	current rise time	South cather to ad	T 10500		40		ns
$t_{d(off)}$	turn-off delay time	inductive load	$T_{VJ} = 125 ^{\circ}\text{C}$		250		ns
t _f	current fall time	$V_{CE} = 600 \text{ V}; I_{C} = 150 \text{ A}$			100		ns
E _{on}	turn-on energy per pulse	$V_{GE} = \pm 15 \text{ V}; R_{G} = 4.7 \Omega$			14		mJ
E_{off}	turn-off energy per pulse	J			16		mJ
RBSOA	reverse bias safe operating area	$V_{GE} = \pm 15 \text{ V}; R_{G} = 4.7 \Omega$	T _{vJ} = 125°C				! ! !
I _{CM}		$\int V_{CEma} = 1200 V$				450	Α
SCSOA	short circuit safe operating area	V _{CEma} = 1200 V					1
tsc	short circuit duration	$V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$	$T_{VJ} = 125 ^{\circ}C$			10	μs
I _{sc}	short circuit current	\int R _G = 4,7 Ω; non-repetitive			600		Α
R _{thJC}	thermal resistance junction to case					0,18	K/W
R _{thCH}	thermal resistance case to heatsink				0,20		K/W
Diode							
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	٧
I _{F25}	forward current		$T_C = 25^{\circ}C$			190	Α
I _{F 80}			$T_C = 80 ^{\circ}C$			130	Α
V _F	forward voltage	I _F = 150A	$T_{VJ} = 25^{\circ}C$			2,20	V
			$T_{VJ} = 125^{\circ}C$		1,95		٧
I _R	reverse current	$V_R = V_{RRM}$	$T_{VJ} = 25^{\circ}C$			0,3	mΑ
			$T_{VJ} = 125^{\circ}C$		0,8		mΑ
$\overline{\mathbf{Q}_{rr}}$	reverse recovery charge) V 000 V			20		μС
I _{RM}	max. reverse recovery current	V _R = 600 V	T (0500		175		Α
t _{rr}	reverse recovery time	$\begin{cases} -di_F/dt = 2500 \text{ A/}\mu\text{s} \\ I_F = 150\text{A; V}_{GE} = 0 \text{ V} \end{cases}$	$T_{VJ} = 125^{\circ}C$		350		ns
E_{rec}	reverse recovery energy	$I_F = I DUA; V_{GE} = U V$			10		mJ
R _{thJC}	thermal resistance junction to case					0,28	K/W
R _{thCH}	thermal resistance case to heatsink				0,20		K/W

MIXA150R1200VA

preliminary

Package V1-A-Pack				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{VJ}	virtual junction temperature			-40		150	°C
Top	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					37		g
M _D	mounting torque			2		2,5	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	6,0			mm
$d_{Spb/Apb}$			terminal to backside	12,0			mm
V _{ISOL}	iooiation voitago	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA 3600 3000			V	
.002		t = 1 minute		3000			V

Part description

M = Module

I = IGBT

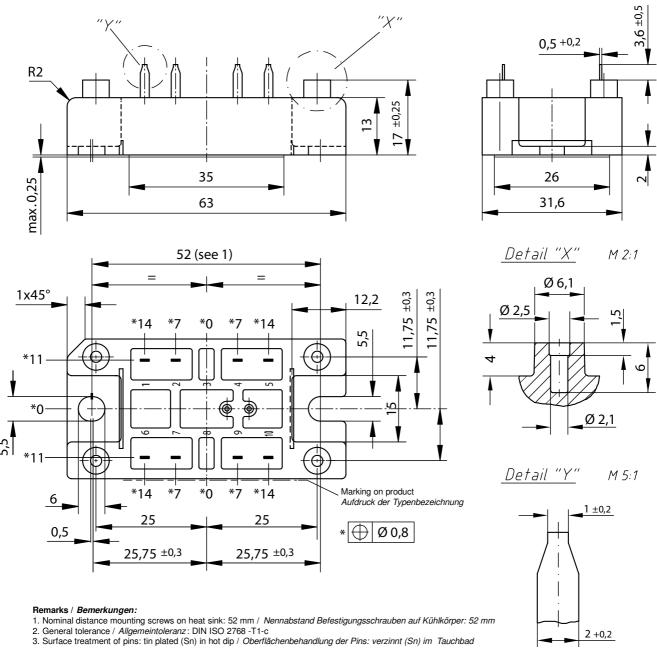
X = XPT IGBT

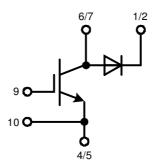
A = Gen 1 / std 150 = Current Rating [A]

R = Boost Chopper

1200 = Reverse Voltage [V]

VA = V1-A-Pack


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MIXA150R1200VA	MIXA150R1200VA	Blister	24	511595


Equiva	alent Circuits for Simulation	* on die level		$T_{VJ} = 15$	50 °C
$I \rightarrow V_0$)—		IGBT	Diode	
V _{0 max}	threshold voltage		1,1	1,25	V
R_{0max}	slope resistance *		9,2	5,7	$\boldsymbol{m}\Omega$

preliminary

Outlines V1-A-Pack

LIXYS

preliminary

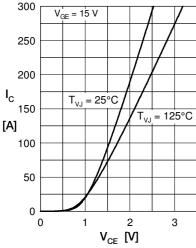


Fig. 1 Typ. output characteristics

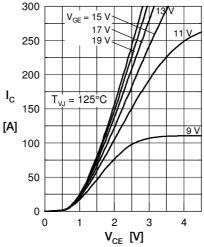


Fig. 2 Typ. output characteristics

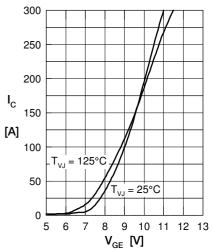


Fig. 3 Typ. tranfer characteristics

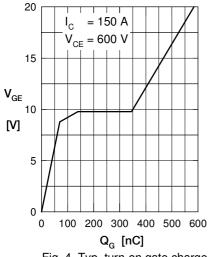


Fig. 4 Typ. turn-on gate charge

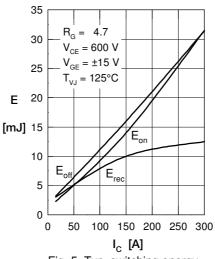


Fig. 5 Typ. switching energy versus collector current

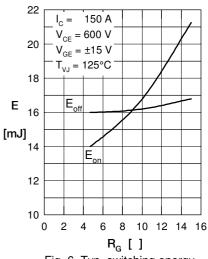


Fig. 6 Typ. switching energy versus gate resistance

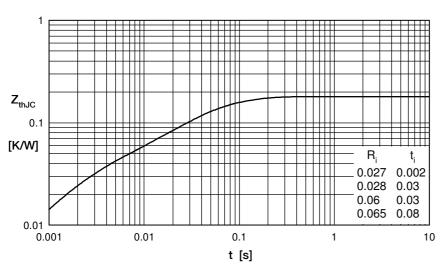


Fig. 7 Typ. transient thermal impedance

preliminary

Diode

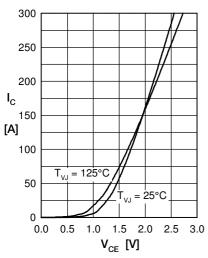


Fig. 1 Typ. Forward current versus $V_{\rm F}$

Fig. 2 Typ. reverse recovery charge Q_{rr} versus di/dt

Fig. 3 Typ. peak reverse current I_{RM} versus di/dt

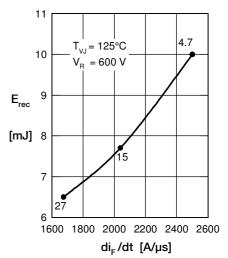


Fig. 6 Typ. recovery energy E_{rec} versus -di/dt

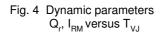


Fig. 5 Typ. recovery time t_{rr} versus $-di_{F}/dt$

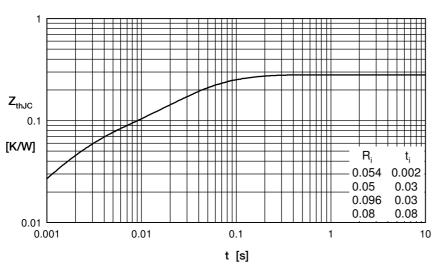


Fig. 7 Transient thermal impedance junction to case