

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

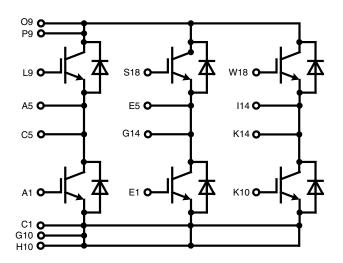
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Six-Pack **XPT IGBT**


= 1200 V

I_{C25} 28 A

 $V_{CE(sat)} =$ 2.1 V

Part name (Marking on product)

MIXA20W1200MC

Features:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
- short circuit rated for 10 µsec.
- very low gate charge
- square RBSOA @ 3x I_c
- low EMI
- Thin wafer technology combined with the XPT design results in a competitive low V_{CE(sat)}
 • SONICTM diode
- fast and soft reverse recovery
- low operating forward voltage

Application:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies

Package:

- "ECO-PAC2" standard package
- Easy to mount with two screws
- Insulated base plate
- Soldering pins for PCB mounting
- Space and weight savings
- Improved temperature and power cycling capability
- · High power density

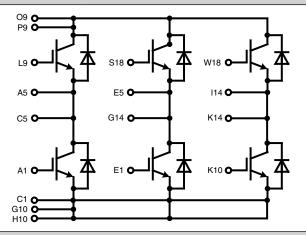
Ouput Inverter T1 - T6

					Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit	
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			1200	V	
V _{GES}	max. DC gate voltage max. transient collector gate voltage	continuous transient				±20 ±30	V	
V _{GEM} I _{C25} I _{C80}	collector current	transione	$T_{C} = 25^{\circ}C$ $T_{C} = 80^{\circ}C$			28 20	A A	
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			100	W	
V _{CE(sat)}	collector emitter saturation voltage	I _C = 16 A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.8 2.1	2.1	V V	
V _{GE(th)}	gate emitter threshold voltage	$I_C = 0.6 \text{ mA}; V_{GE} = V_{CE}$	T _{VJ} = 25°C	5.5	6.0	6.5	V	
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		0.02 0.2	0.2	mA mA	
I _{GES}	gate emitter leakage current	V _{GE} = ±20 V				500	nA	
Q _{G(on)}	total gate charge	$V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$	15 A		47		nC	
$\begin{aligned} & \mathbf{t_{d(on)}} \\ & \mathbf{t_r} \\ & \mathbf{t_{d(off)}} \\ & \mathbf{t_f} \\ & \mathbf{E_{on}} \\ & \mathbf{E_{off}} \end{aligned}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	inductive load $V_{CE} = 600 \text{ V; } I_{C} = 15 \text{ A}$ $V_{GE} = \pm 15 \text{ V; } R_{G} = 56 \Omega$	T _{vJ} = 125°C		70 40 250 100 1.55 1.7		ns ns ns ns mJ mJ	
RBSOA	reverse bias safe operating area	$V_{\text{GE}} = \pm 15 \text{ V}; R_{\text{G}} = 56 \Omega;$	$T_{VJ} = 125^{\circ}C$ $V_{CEK} = 1200 \text{ V}$			45	Α	
SCSOA t _{sc}	short circuit safe operating area short circuit duration short circuit current	$V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V};$ $R_G = 56 \Omega; \text{ non-repetitive}$	T _{vJ} = 125°C		60	10	μs A	
R _{thJC}	thermal resistance junction to case	(per IGBT)				1.3	K/W	

Output Inverter D1 - D6

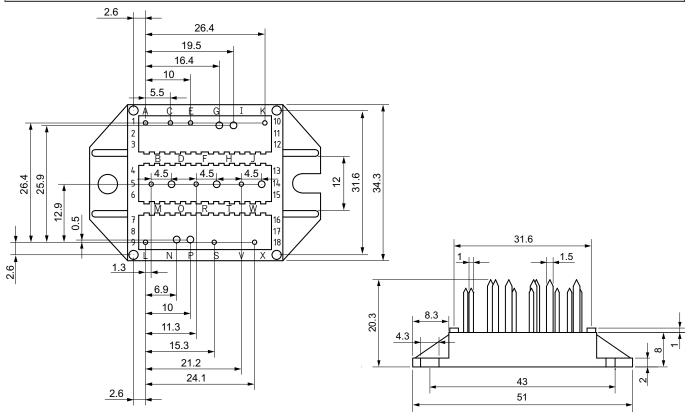
					Ratir	ngs	s	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit	
V _{RRM}	max. repetitve reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	V	
_{F25} _{F80}	forward current		$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 80^{\circ}{\rm C}$			33 22	A A	
V _F	forward voltage	$I_F = 20 \text{ A}; V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		1.95 1.85	2.2	V V	
Q _{rr} I _{RM} t _{rr} E _{rec}	reverse recovery charge max. reverse recovery current reverse recovery time reverse recovery energy	$\begin{cases} V_{R} = 600 \text{ V} \\ di_{F}/dt = -400 \text{ A/}\mu\text{s} \\ I_{F} = 20 \text{ A; } V_{GE} = 0 \text{ V} \end{cases}$	T _{VJ} = 125°C		3 20 350 0.7		μC A ns mJ	
R _{thJC}	thermal resistance junction to case	(per diode)				1.5	K/W	

T_C = 25°C unless otherwise stated

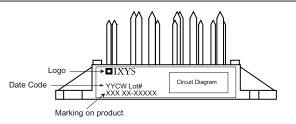


MIXA20W1200MC

Module						
				Ratii	ngs	
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
T_{VJ}	operating temperature		-40		125	°C
T_{VJM}	max. virtual junction temperature				150	°C
T_{stg}	storage temperature		-40		125	°C
$V_{\rm ISOL}$	isolation voltage	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}; t = 1 \text{ s}$			3600	V~
M _d	mounting torque (M5)		1.5		2	Nm
d _s	creep distance on surface		11.2			mm
d _A	strike distance through air		11.2			mm
Weight				24		g



Circuit Diagram



Outline Drawing

Dimensions in mm (1 mm = 0.0394")

Product Marking

Part number

M = Module

I = IGBT X = XPT

A = Standard

20 = Current Rating [A] W = Six-Pack 1200 = Reverse Voltage [V] MC = ECO-PAC2

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MIXA20W1200MC	MIXA20W1200MC	Box	6	509537

IXYS reserves the right to change limits, test conditions and dimensions.

Inverter T1 - T6



Fig. 1 Typ. output characteristics

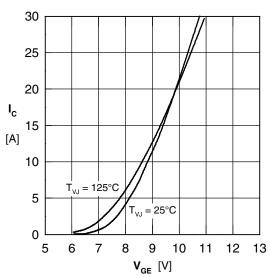


Fig. 3 Typ. tranfer characteristics

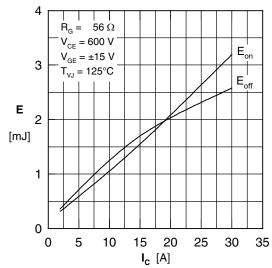


Fig. 5 Typ. switching energy vs. collector current

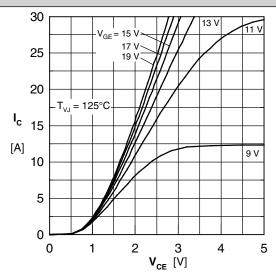


Fig. 2 Typ. output characteristics

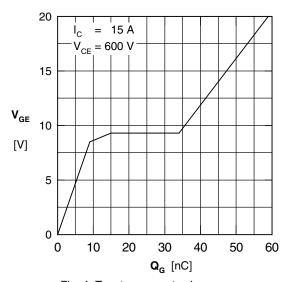


Fig. 4 Typ. turn-on gate charge

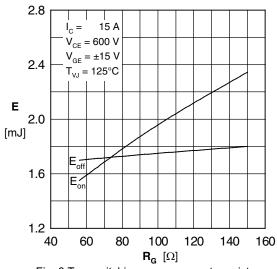


Fig. 6 Typ. switching energy vs. gate resistance

IXYS reserves the right to change limits, test conditions and dimensions.

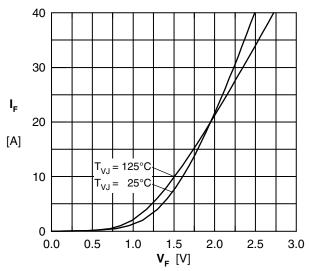


Fig. 7 Typ. Forward current versus V_F

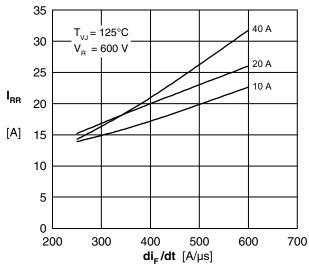


Fig. 9 Typ. peak reverse current I_{RM} vs. di/dt

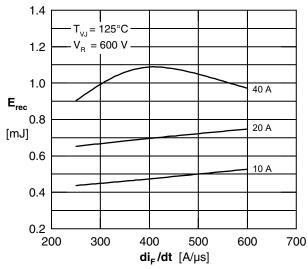


Fig. 11 Typ. recovery energy $\mathbf{E}_{\mathrm{rec}}$ versus di/dt

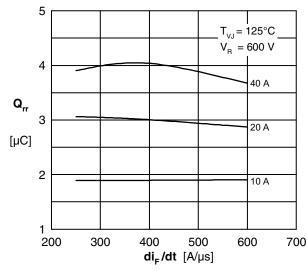


Fig. 8 Typ. reverse recov.charge Q_{rr} vs. di/dt

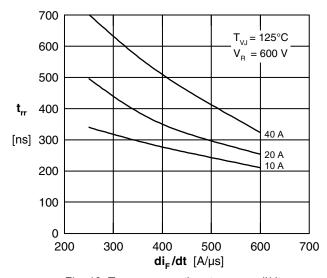


Fig. 10 Typ. recovery time t_{rr} versus di/dt



Fig. 12 Typ. transient thermal impedance

IXYS reserves the right to change limits, test conditions and dimensions.

20110304b