imall

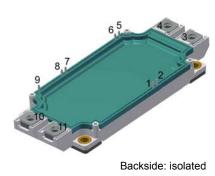
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

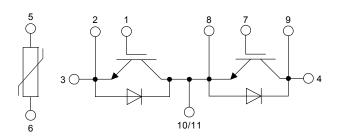
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


MIXA600PF650TSF

XPT IGBT Module

		tentative
V_{CES}	= 2x	650 V
۱ _{C25}	=	720A
$V_{CE(sat)}$	=	1.65V


Phase leg + free wheeling Diodes + NTC

Part number MIXA600PF650TSF

S E72873

20121107

Features / Advantages:

- High level of integration only one power semiconductor module required for the whole drive
- Rugged XPT design (Xtreme light Punch Through) results in:
- short circuit rated for 10 µsec.
- very low gate charge
- low EMI
- square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
- Temperature sense included
- SONIC[™] diode
- fast and soft reverse recovery
- low operating forward voltage

Applications:

- AC motor drives
- Pumps, Fans
- Air-conditioning system
- Inverter and power supplies
- UPS

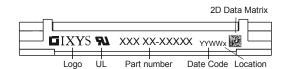
Package: SimBus F

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 17 mm
- Base plate: Copper
- internally DCB isolated
- Advanced power cycling

IXYS reserves the right to change limits, conditions and dimensions.

MIXA600PF650TSF

tentative


IGBT					Ratings	5	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			650	V
V _{GES}	max. DC gate voltage					±20	V
V _{gem}	max. transient gate emitter voltage					±30	V
I _{C25}	collector current		$T_c = 25^{\circ}C$			720	A
I _{C 80}			$T_c = 80^{\circ}C$			490	A
Ptot	total power dissipation		$T_c = 25^{\circ}C$			1750	W
V _{CE(sat)}	collector emitter saturation voltage	I _c = 600A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.65	1.8	V
			$T_{v_{J}} = 150^{\circ}C$		1.85		V
V _{GE(th)}	gate emitter threshold voltage	I_{c} = 9.6mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	4	4.8	5.5	V
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$			1.8	mA
			T _{vJ} = 150°C		2		mA
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 V$				1.5	μA
Q _{G(on)}	total gate charge	V _{CE} = 300 V; V _{GE} = 15 V; I	c = 600 A		840		nC
t _{d(on)}	turn-on delay time)			30		ns
t,	current rise time				50		ns
t _{d(off)}	turn-off delay time	inductive load	T _{vJ} = 150°C		100		ns
tr	current fall time	$> V_{CE} = 300 \text{ V}; I_{C} = 600 \text{ A}$			40		ns
Eon	turn-on energy per pulse	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 1.3 \Omega$			6		mJ
E _{off}	turn-off energy per pulse)			22.8		mJ
RBSOA	reverse bias safe operating area	V_{GE} = ±15 V; R _G = 1.3 Ω	T _{vJ} = 150°C				1 1 1
I _{CM}		$\int V_{CEmax} = 650 V$				1200	A
SCSOA	short circuit safe operating area	→ V _{CEmax} = 650 V					1
t _{sc}	short circuit duration	∀ _{CE} = 360 V; V _{GE} = ±15 V	T _{vJ} = 150°C			10	μs
l _{sc}	short circuit current	$\int R_{g} = 1.3 \Omega$; non-repetitive			2400		A
R _{thJC}	thermal resistance junction to case					0.085	K/W
R _{thCH}	thermal resistance case to heatsink				0.05		K/W
Diode							
V _{RRM}	max. repetitive reverse voltage		$T_{vJ} = 25^{\circ}C$			650	V
I _{F25}	forward current		$T_c = 25^{\circ}C$			490	A
I _{F80}			$T_c = 80^{\circ}C$			340	А
V _F	forward voltage	I _F = 600A	$T_{VJ} = 25^{\circ}C$			1.90	V
•			T _{vJ} = 125°C		1.70		v
I _R	reverse current	V _R = V _{RRM}	$T_{VJ} = 25^{\circ}C$			*	mA
n.	* not applicable, see Ices value abov		T _{vJ} = 125°C		*		mA
Q _r	reverse recovery charge)			tbd		μC
I _{RM}	max. reverse recovery current	V _R = 300 V			tbd		Ā
t _{rr}	reverse recovery time	$\begin{array}{l} -di_{F}/dt = 0 \text{ A}/\mu\text{s} \\ I_{F} = 600\text{ A}; \text{ V}_{GE} = 0 \text{ V} \end{array}$	$T_{VJ} = 125^{\circ}C$		tbd		ns
Erec	reverse recovery energy	$\int I_{\rm F} = 600 \text{A}; V_{\rm GE} = 0 \text{V}$			tbd		mJ
100				1			i
R _{thJC}	thermal resistance junction to case					0.095	K/W

20121107

tentative

Package SimBus F					Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit		
I _{RMS}	RMS current	per terminal					Α		
T _{stg}	storage temperature			-40		125	°C		
T _{VJ}	virtual junction temperature					175	°C		
Weight					350		g		
M _D	mounting torque			3		6	Nm		
Μ _τ	terminal torque			3		6	Nm		
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	12.7			mm		
d _{Spb/Apb}		Striking distance through an	terminal to backside	10.0			mm		
	isolation voltage	t = 1 second	50/60 Hz RMS $I_{\rm ISOI} \leq 1 \text{mA}$	3000			V		
		t = 1 minute		2500			V		
R _{pin-chip}	resistance pin to chip	$V = V_{CEsat} + 2$ ·	$R \cdot I_c$ resp. $V = V_F + 2 \cdot R \cdot I_F$		0.65		mΩ		

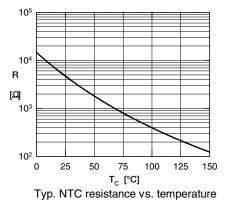
Part number

M = Module

I = IGBT

X = XPT IGBT

A = Gen 1 / std

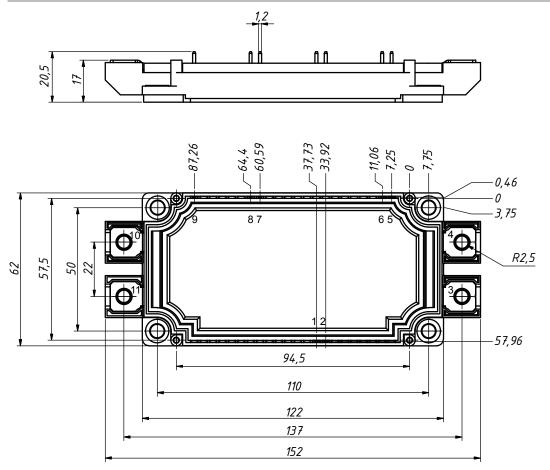

600 = Current Rating [A] PF = Phase leg + free wheeling Diodes

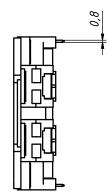
650 = Reverse Voltage [V] T = Thermistor \ Temperature sensor

SF = SimBus F

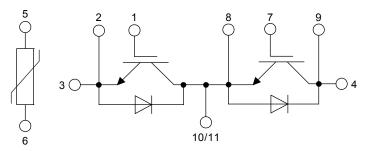
Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MIXA600PF650TSF	MIXA600PF650TSF	Box	3	513794

Temperature Sensor NTC								
Symbol	Definition	Conditions			typ.	max.	Unit	
R ₂₅	resistance	T _{vj} =	25°	4.75	5	5.25	kΩ	
B _{25/50}	temperature coefficient				3375	1	К	
Equivalent Circuits for Simulation \cdot on die level $T_{vJ} = 175 ^{\circ}C$								
	- <u>R</u> ₀			IG	вт	Diode		
V _{0 max}	threshold voltage			1	.1	1.21	V	
R _{0 max}	slope resistance *			1	.8	1	mΩ	




IXYS reserves the right to change limits, conditions and dimensions.

MIXA600PF650TSF


tentative

Outlines SimBus F

20121107

IXYS reserves the right to change limits, conditions and dimensions.