: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MJE13005G

SWITCHMODE ${ }^{\text {m }}$ Series NPN Silicon Power
 Transistors

These devices are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulator's, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits.

Features

- $\mathrm{V}_{\text {CEO(sus) }} 400 \mathrm{~V}$
- Reverse Bias SOA with Inductive Loads @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$
- Inductive Switching Matrix 2 to $4 \mathrm{~A}, 25$ and $100^{\circ} \mathrm{C}_{\mathrm{c}} @ 3 \mathrm{~A}$, $100^{\circ} \mathrm{C}$ is 180 ns (Typ)
- 700 V Blocking Capability
- SOA and Switching Applications Information
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO(sus) }}$	400	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEV }}$	700	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {Ebo }}$	9	Vdc
$\begin{array}{ll}\text { Collector Current } & \text { - Continuous } \\ & \text { - Peak (Note 1) }\end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} \\ & \mathrm{I}_{\mathrm{CM}} \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	Adc
$\begin{array}{ll}\text { Base Current } & \text { - Continuous } \\ & \text { - Peak (Note 1) }\end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{BM}} \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	Adc
$\begin{array}{ll}\text { Emitter Current } & \text { - Continuous } \\ & \text { - Peak (Note 1) }\end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{E}} \\ & \mathrm{I}_{\mathrm{EM}} \end{aligned}$	$\begin{gathered} 6 \\ 12 \end{gathered}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 2 \\ 0.016 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 75 \\ & 0.6 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	1.67	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

4 AMPERE NPN SILICON POWER TRANSISTOR 400 VOLTS - 75 WATTS

TO-220AB
CASE 221A-09 STYLE 1

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

Device	Package	Shipping
MJE13005G	TO-220 (Pb-Free)	50 Units / Rail

MJE13005G

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (Note 2)					
Collector-Emitter Sustaining Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {CEO }}$ (sus)	400	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \quad\left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated Value, } \mathrm{V}_{\mathrm{BE} \text { (off) }}=1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated Value, } \mathrm{V}_{\mathrm{BE}(\text { (off })}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$I_{\text {CEV }}$	-	-	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	mAdc
Emitter Cutoff Current $\left(V_{E B}=9 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	1	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with base forward biased	$\mathrm{I}_{\mathrm{S} / \mathrm{b}}$	-	See Figure 11
Clamped Inductive SOA with Base Reverse Biased	RBSOA	-	See Figure 12

ON CHARACTERISTICS (Note 2)

$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	10 8	-	60 40	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \begin{array}{l} \left(I_{C}=1 \mathrm{Adc}, I_{B}=0.2 \mathrm{Adc}\right) \\ \left(I_{C}=2 \mathrm{Adc}, \mathrm{I}_{B}=0.5 \mathrm{Adc}\right) \\ \left(I_{C}=4 \mathrm{Adc}, \mathrm{I}_{B}=1 \mathrm{Adc}\right) \\ \left(I_{C}=2 \mathrm{Adc}, \mathrm{I}_{B}=0.5 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		-	$\begin{gathered} 0.5 \\ 0.6 \\ 1 \\ 1 \end{gathered}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \quad\left(I_{C}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \\ & \left(I_{C}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{AdC}\right) \\ & \left(I_{C}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{B E \text { (sat) }}$	-	-	$\begin{aligned} & 1.2 \\ & 1.6 \\ & 1.5 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=500\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}\right)$	f_{T}	4	-	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}\right)$	C_{ob}	-	65	-	pF

SWITCHING CHARACTERISTICS

Resistive Load (Table						
Delay Time	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=125 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A},\right. \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.4 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=25 \mu \mathrm{~s}, \\ & \text { Duty Cycle } \leq 1 \%) \end{aligned}$	t_{d}	-	0.025	0.1	$\mu \mathrm{s}$
Rise Time		t_{r}	-	0.3	0.7	$\mu \mathrm{s}$
Storage Time		$\mathrm{t}_{\text {s }}$	-	1.7	4	$\mu \mathrm{s}$
Fall Time		t_{f}	-	0.4	0.9	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 2, Figure 13)						
Voltage Storage Time	$\begin{aligned} & \left(I_{C}=2 \mathrm{~A}, \mathrm{~V}_{\text {clamp }}=300 \mathrm{Vdc},\right. \\ & \left.\mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}(\text { off })}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	t_{sv}	-	0.9	4	$\mu \mathrm{s}$
Crossover Time		t_{c}	-	0.32	0.9	$\mu \mathrm{s}$
Fall Time		t_{fi}	-	0.16	-	$\mu \mathrm{s}$

2. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$.

Figure 1. DC Current Gain

Figure 3. Base-Emitter Voltage

Figure 5. Collector Cutoff Region

Figure 2. Collector Saturation Region

Figure 4. Collector-Emitter Saturation Voltage

Figure 6. Capacitance

TIME
Figure 7. Inductive Switching Measurements
Table 1. Typical Inductive Switching Performance

$\mathbf{I}_{\mathbf{c}}$ $\mathbf{A M P}$	$\mathbf{T}_{\mathbf{c}}$ ${ }^{\circ} \mathbf{C}$	$\mathbf{t}_{\mathbf{s v}}$ $\mathbf{n s}$	$\mathbf{t}_{\mathbf{r v}}$ $\mathbf{n s}$	$\mathbf{t}_{\mathbf{f i}}$ $\mathbf{n s}$	$\mathbf{t}_{\mathbf{t i}}$ $\mathbf{n s}$	$\mathbf{t}_{\mathbf{c}}$ $\mathbf{n s}$
2	25	600	70	100	80	180
	100	900	110	240	130	320
3	25	650	60	140	60	200
	100	950	100	330	100	350
4	25	550	70	160	100	220
	100	850	110	350	160	390

NOTE: All Data recorded in the inductive Switching Circuit In Table 2.

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.
$\mathrm{t}_{\mathrm{sv}}=$ Voltage Storage Time, $90 \% \mathrm{I}_{\mathrm{B} 1}$ to $10 \% \mathrm{~V}_{\text {clamp }}$
$\mathrm{t}_{\mathrm{rv}}=$ Voltage Rise Time, $10-90 \% \mathrm{~V}_{\text {clamp }}$
$\mathrm{t}_{\mathrm{fi}}=$ Current Fall Time, $90-10 \% \mathrm{I}_{\mathrm{C}}$
$\mathrm{t}_{\mathrm{ti}}=$ Current Tail, $10-2 \% \mathrm{I}_{\mathrm{C}}$
$\mathrm{t}_{\mathrm{c}}=$ Crossover Time, $10 \% \mathrm{~V}_{\text {clamp }}$ to $10 \% \mathrm{I}_{\mathrm{C}}$
An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms.

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from $\mathrm{AN}-222$:

$$
P_{S W T}=1 / 2 V_{C C} l_{C}\left(t_{C}\right) f
$$

In general, $\mathrm{t}_{\mathrm{rv}}+\mathrm{t}_{\mathrm{fi}} \simeq \mathrm{t}_{\mathrm{c}}$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at $25^{\circ} \mathrm{C}$ and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_{c} and t_{sv}) which are guaranteed at $100^{\circ} \mathrm{C}$.

RESISTIVE SWITCHING PERFORMANCE

Figure 8. Turn-On Time

Figure 9. Turn-Off Time

MJE13005G

Table 2. Test Conditions for Dynamic Performance

REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING		RESISTIVE SWITCHING
	Coil Data: GAP for $200 \mu \mathrm{H} / 20 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}$ Ferroxcube Core \#6656 $\mathrm{L}_{\text {coil }}=200 \mu \mathrm{H}$ $\mathrm{V}_{\text {clamp }}=300 \mathrm{Vdc}$ Full Bobbin (~ 16 Turns) \#16	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{C}}=62 \Omega \\ & \mathrm{D} 1=1 \mathrm{~N} 5820 \text { or Equiv. } \\ & \mathrm{R}_{\mathrm{B}}=22 \Omega \end{aligned}$
	OUTPUT WAVEFORMS t_{1} ADJUSTED TO OBTAIN IC $\mathrm{t}_{1} \approx \frac{\mathrm{~L}_{\text {coil }}\left({ }^{\left(\mathrm{C}_{\mathrm{pk}}\right)}\right.}{\mathrm{V}_{\mathrm{CC}}}$ Test Equipment Scope-Tektronics 475 or Equivalent $\mathrm{t}_{2} \approx \frac{\mathrm{~L}_{\text {coil }}\left(\mathrm{I}_{\mathrm{pk}}\right)}{\mathrm{V}_{\text {clamp }}}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$ Duty Cycle $=1.0 \%$ R_{B} and R_{C} adjusted for desired I_{B} and I_{C}

Figure 10. Typical Thermal Response [$Z_{\theta J C}(t)$]

MJE13005G

SAFE OPERATING AREA INFORMATION

The Safe Operating Area Figures 11 and 12 are specified ratings for these devices under the test conditions shown.

Figure 11. Forward Bias Safe Operating Area

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 11 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13.
$\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 12. Reverse Bias Switching Safe Operating Area

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete RBSOA characteristics.

Figure 13. Forward Bias Power Derating

MJE13005G

PACKAGE DIMENSIONS

TO-220AB
CASE 221A-09
ISSUE AF

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

