

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet: Technical Data

MKE02P64M20SF0

KE02 Sub-Family Data Sheet

Supports the following:

MKE02Z16VLC2(R),

MKE02Z32VLC2(R),

MKE02Z64VLC2(R),

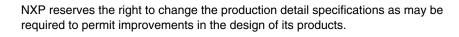
MKE02Z16VLD2(R),

MKE02Z32VLD2(R),

MKE02Z64VLD2(R).

MKE02Z32VLH2(R),

MKE02Z64VLH2(R),


MKE02Z32VQH2(R), and

MKE02Z64VQH2(R)

Key features

- Operating characteristics
 - Voltage range: 2.7 to 5.5 V
 - Flash write voltage range: 2.7 to 5.5 V
 - Temperature range (ambient): -40 to 105°C
- Performance
 - Up to 20 MHz ARM® Cortex-M0+ core
 - Single cycle 32-bit x 32-bit multiplier
 - Single cycle I/O access port
- · Memories and memory interfaces
 - Up to 64 KB flash
 - Up to 256 B EEPROM
 - Up to 4 KB RAM
- Clocks
 - Oscillator (OSC) supports 32.768 kHz crystal or 4 MHz to 20 MHz crystal or ceramic resonator; choice of low power or high gain oscillators
 - Internal clock source (ICS) internal FLL with internal or external reference, 31.25 kHz pretrimmed internal reference for 16 MHz system clock (able to be trimmed for up to 20 MHz system clock)
 - Internal 1 kHz low-power oscillator (LPO)

- System peripherals
 - Power management module (PMC) with three power modes: Run, Wait, Stop
 - Low-voltage detection (LVD) with reset or interrupt, selectable trip points
 - Watchdog with independent clock source (WDOG)
 - Programmable cyclic redundancy check module (CRC)
 - Serial wire debug interface (SWD)
 - Bit manipulation engine (BME)
- Security and integrity modules
 - 64-bit unique identification (ID) number per chip
- Human-machine interface
 - Up to 57 general-purpose input/output (GPIO)
 - Two up to 8-bit keyboard interrupt modules (KBI)
 - External interrupt (IRQ)
- Analog modules
 - One up to 16-channel 12-bit SAR ADC, operation in Stop mode, optional hardware trigger (ADC)
 - Two analog comparators containing a 6-bit DAC and programmable reference input (ACMP)
- Timers
 - One 6-channel FlexTimer/PWM (FTM)
 - Two 2-channel FlexTimer/PWM (FTM)
 - One 2-channel periodic interrupt timer (PIT)
 - One real-time clock (RTC)

- Communication interfaces
 - Two SPI modules (SPI)
 - Up to three UART modules (UART)
 - One I2C module (I2C)
- Package options
 - 64-pin QFP/LQFP
 - 44-pin LQFP
 - 32-pin LQFP

Table of Contents

1 Ordering parts	4	5.2.2 FTM module timing	17
1.1 Determining valid orderable parts	4	5.3 Thermal specifications	18
2 Part identification	4	5.3.1 Thermal operating requirements	18
2.1 Description	4	5.3.2 Thermal characteristics	18
2.2 Format	4	6 Peripheral operating requirements and behaviors	20
2.3 Fields	4	6.1 Core modules	20
2.4 Example	5	6.1.1 SWD electricals	20
3 Parameter classification	5	6.2 External oscillator (OSC) and ICS characteristics	21
4 Ratings	6	6.3 NVM specifications	23
4.1 Thermal handling ratings	6	6.4 Analog	24
4.2 Moisture handling ratings	6	6.4.1 ADC characteristics	24
4.3 ESD handling ratings	6	6.4.2 Analog comparator (ACMP) electricals	27
4.4 Voltage and current operating ratings	7	6.5 Communication interfaces	27
5 General	7	6.5.1 SPI switching specifications	27
5.1 Nonswitching electrical specifications	7	7 Dimensions	30
5.1.1 DC characteristics	7	7.1 Obtaining package dimensions	30
5.1.2 Supply current characteristics	14	8 Pinout	31
5.1.3 EMC performance	15	8.1 Signal multiplexing and pin assignments	31
5.2 Switching specifications	16	8.2 Device pin assignment	33
5.2.1 Control timing	16	9 Revision history	35

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE02Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE02
А	Key attribute	• Z = M0+ core
FFF	Program flash memory size	 16 = 16 KB 32 = 32 KB 64 = 64 KB
R	Silicon revision	(Blank) = MainA = Revision after main

Table continues on the next page...

Field	Description	Values
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LC = 32 LQFP (7 mm x 7 mm) LD = 44 LQFP (10 mm x 10 mm) QH = 64 QFP (14 mm x 14 mm) LH = 64 LQFP (10 mm x 10 mm)
CC	Maximum CPU frequency (MHz)	• 2 = 20 MHz
N	Packaging type	R = Tape and reel(Blank) = Trays

2.4 Example

This is an example part number:

MKE02Z64VQH2

3 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	1	3		1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 800 mA.
 - I/O pins pass +60/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol Description Min. Unit Max. ٧ V_{DD} Digital supply voltage 6.0 -0.3120 I_{DD} Maximum current into V_{DD} mΑ $V_{DD} + 0.3^{1}$ ٧ V_{IN} Input voltage except true open drain pins -0.3-0.3Input voltage of true open drain pins -25 25 I_D Instantaneous maximum current single pin limit (applies to all mΑ port pins) V_{DDA} Analog supply voltage $V_{DD} - 0.3$ $V_{DD} + 0.3$ V

Table 2. Voltage and current operating ratings

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 3. DC characteristics

Symbol	С	Descriptions		Min	Typical ¹	Max	Unit
_	_	Operating voltage	_	2.7	_	5.5	V

Table continues on the next page...

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

^{1.} Maximum rating of V_{DD} also applies to V_{IN}.

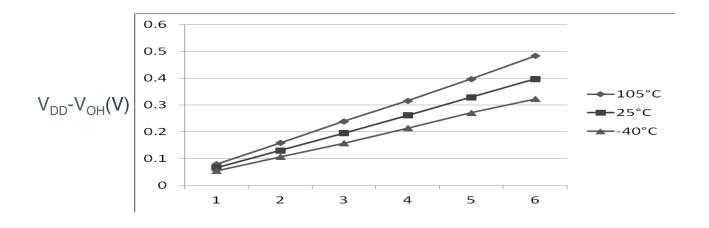
Nonswitching electrical specifications

Table 3. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
V _{OH}	Р	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	٧
	С	high voltage	and PTA3, standard- drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
	Р		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{DD}-0.8$			V
	С		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	$V_{DD} - 0.8$		_	V
I _{OHT}	D	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
		high current		3 V	_	_	-60	
V _{OL}	Р	Output	All I/O pins, standard-	5 V, $I_{load} = 5 \text{ mA}$		_	0.8	V
	С	low voltage	drive strength	3 V, $I_{load} = 2.5 \text{ mA}$		_	8.0	V
	Р		High current drive pins,	5 V, I _{load} =20 mA	_	_	8.0	V
	С		high-drive strength ²	3 V, I _{load} = 10 mA	_	_	8.0	V
I _{OLT}	D	Output	Max total I _{OL} for all ports	5 V	_	_	100	mA
		low current		3 V	_	_	60	
V _{IH}	Р	Input	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	٧
		high voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V _{IL}	Р	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_		0.35 × V _{DD}	V
				2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	С	Input hysteresi s	All digital inputs	_	0.06 × V _{DD}	_	_	mV
I _{In}	Р	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
II _{INTOT} I	С	Total leakage combine d for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	D	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} >$	-2	_	2	mA
		injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins	V _{DD}	-5	_	25	
C _{In}	С	Input	capacitance, all pins	_		_	7	pF
V _{RAM}	С	· ·	M retention voltage	_	2.0	_	_	V
* HAIVI		1 17 1	: Storition Tollago					

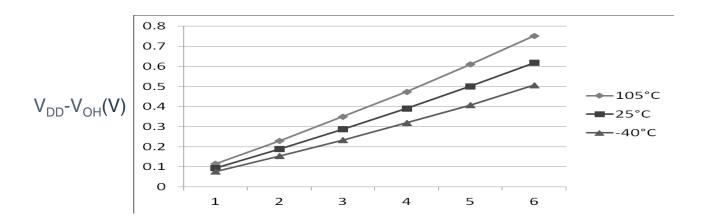
^{1.} Typical values are measured at 25 $^{\circ}\text{C}$. Characterized, not tested.

^{2.} Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.


Nonswitching electrical specifications

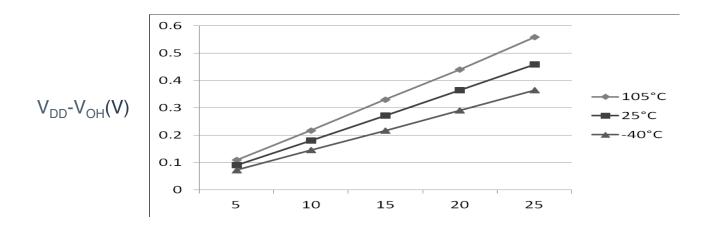
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 4. LVD and POR specification


Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ar	m voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold—hig	roltage detect ph range (LVDV 1) ²	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	Iligii railige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold—lov	voltage detect w range (LVDV 0)	2.56	2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold— low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		v-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	_	mV
V _{BG}	Р	Buffered ban	dgap output 3	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

 $I_{OH}(mA)$

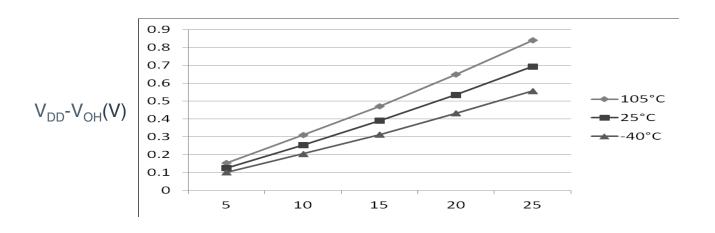
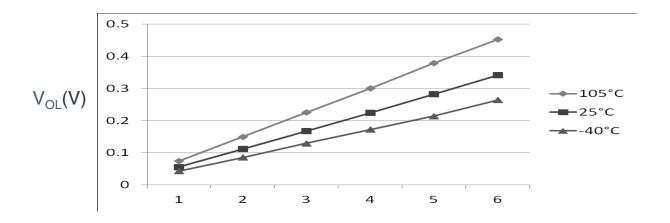

Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

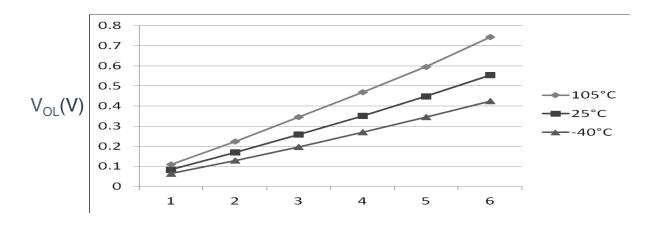
 $I_{OH}(mA)$

Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

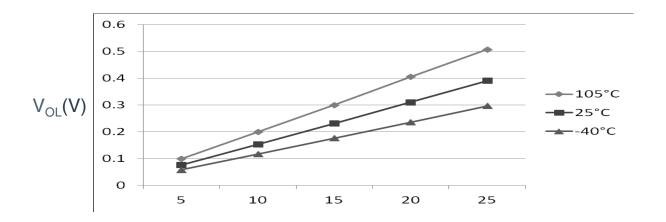
 $I_{OH}(mA)$ Figure 3. Typical $V_{DD}\text{-}V_{OH}$ Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

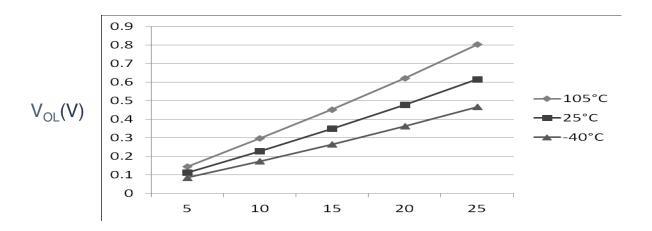

Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

 $I_{OH}(mA)$

 $I_{OL}(mA)$


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

13

 $I_{OL}(mA)$

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$

Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 5. Supply current characteristics

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Run supply current FEI	RI _{DD}	20/20 MHz	5	6.7	_	mA	–40 to 105 °C
С	mode, all modules clocks enabled; run from flash		10/10 MHz		4.5	_		
	enabled, full from flash		1/1 MHz		1.5	_		
С			20/20 MHz	3	6.6	_		
С			10/10 MHz		4.4	_		
			1/1 MHz		1.45	_		
С	Run supply current FEI	RI _{DD}	20/20 MHz	5	5.3	_	mA	–40 to 105 °C
С	mode, all modules clocks disabled; run from flash		10/10 MHz		3.7	_		
	disabled, full from flash		1/1 MHz		1.5	_		
С			20/20 MHz	3	5.3	_		
С			10/10 MHz		3.7	_		
			1/1 MHz		1.4	_		
Р	Run supply current FBE	RI _{DD}	20/20 MHz	5	9	14.8	mA	–40 to 105 °C
С	mode, all modules clocks enabled; run from RAM		10/10 MHz		5.2	_		
	chabled, full from 11/4W		1/1 MHz		1.45	_		
Р			20/20 MHz	3	8.8	11.8		
С			10/10 MHz		5.1	_		
			1/1 MHz		1.4	_		
Р	Run supply current FBE	RI _{DD}	20/20 MHz	5	8	12.3	mA	–40 to 105 °C
С	mode, all modules clocks disabled; run from RAM		10/10 MHz		4.4	_		
	aloabloa, ran nom rir avi		1/1 MHz		1.35	_		
Р			20/20 MHz	3	7.8	9.2		
С			10/10 MHz		4.2	_		
			1/1 MHz		1.3	_		
Р	Wait mode current FEI	WI _{DD}	20/20 MHz	5	5.5	_	mA	–40 to 105 °C
С	mode, all modules clocks enabled		20/10 MHz		3.5	_		
	Chabled		1/1 MHz		1.4	_		
С			20/20 MHz	3	5.4	_		
			10/10 MHz		3.4	_		
			1/1 MHz		1.4			
Р	Stop mode supply current	SI _{DD}	_	5	2	85	μA	–40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³		_	3	1.9	80		–40 to 105 °C

Table continues on the next page...

15

Table 5. Supply current characteristics (continued
--

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	ADC adder to Stop	_	_	5	86 (64-, 44-	_	μA	–40 to 105 °C
	ADLPC = 1				pin packages)			
	ADLSMP = 1				42 (32-pin			
	ADCO = 1				package)			
С	MODE = 10B			3	82 (64-, 44-	_	1	
	ADICLK = 11B				pin packages)			
					41 (32-pin package)			
С	ACMP adder to Stop	_	_	5	12	_	μΑ	–40 to 105 °C
С				3	12	_		
С	LVD adder to stop ⁴	_	_	5	128	_	μA	–40 to 105 °C
С				3	124	<u> </u>		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 105 °C.
- 3. RTC adder causes I_{DD} to increase typically by less than 1 µA; RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

Switching specifications

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 64-pin QFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	14	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	15	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	3	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	4	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	М	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 10 \text{ MHz}$ (crystal), $f_{BUS} = 20 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 7. Control timing

Num	С	Rating	J	Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock		f _{Sys}	DC	_	20	MHz
2	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz
3	Р	Internal low power oscillato	r frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
5	D	Reset low drive	t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns	
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
7	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

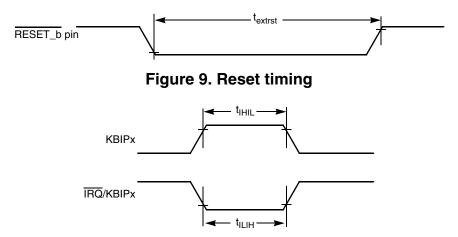


Figure 10. KBIPx timing

5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

С	Function	Symbol	Min	Max	Unit
D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
D	External clock period	t _{TCLK}	4	_	t _{cyc}
D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
D	External clock low time	t _{cikl}	1.5	_	t _{cyc}
D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

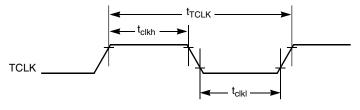


Figure 11. Timer external clock

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

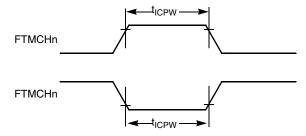


Figure 12. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal operating requirements

Table 9. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T_J	Die junction temperature	-40	125	°C	
T_A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} x$ chip power dissipation

5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{\rm I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 10. Thermal attributes

Board type	Symbol	Description	64 LQFP	64 QFP	44 LQFP	32 LQFP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	71	61	75	86	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	47	53	57	°C/W	1, 3

Table continues on the next page...

Board type	Symbol	Description	64 LQFP	64 QFP	44 LQFP	32 LQFP	Unit	Notes
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	50	62	72	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	41	47	51	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	35	32	34	33	°C/W	4
_	R _{eJC}	Thermal resistance, junction to case	20	23	20	24	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	5	8	5	6	°C/W	6

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

Peripheral operating requirements and behaviors

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and P_D are obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	20	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

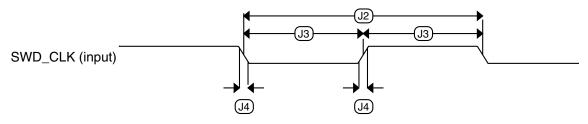


Figure 13. Serial wire clock input timing

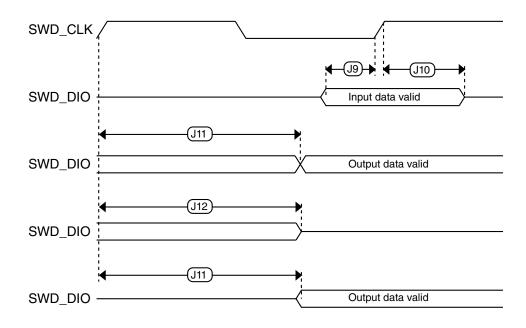


Figure 14. Serial wire data timing

External oscillator (OSC) and ICS characteristics

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)

Num	С	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	C resonator frequency		High range (RANGE = 1)	f _{hi}	4	_	20	MHz
2	D	Lo	oad capacitors	C1, C2	See Note ²			
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	MΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
	Low Frequency		High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ

Table continues on the next page...

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016 21 **NXP Semiconductors**

Peripheral operating requirements and behaviors

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	С	haracteristic	Symbol	Min	Typical ¹	Max	Unit
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
		range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	Р	Internal reference clock (IRC) frequency trim range		f _{int_t}	31.25	_	39.0625	kHz
9	Р	Internal reference clock frequency, factory trimmed	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	31.25	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	16	_	20	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	Δf _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	∆f _{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from 0 °C to 105°C	Δf _{int_t}	-0.5	_	0.5	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	Δf_{dco_ft}	-1.5	_	1	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	Δf _{dco_ft}	-1	_	1	
14	С	FLL a	acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	C	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷		C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

23

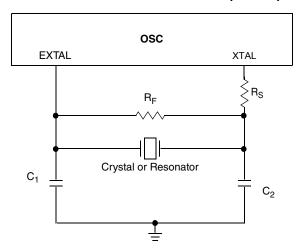


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 13. Flash and EEPROM characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms

Table continues on the next page...

Peripheral operating requirements and behaviors

Table 13. Flash and EEPROM characteristics (continued)

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t_{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to $T_H = -40$ °C to 105 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 3. Maximum times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and typical $f_{\mbox{\scriptsize NVMBUS}}$ plus aging
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

6.4 Analog

6.4.1 ADC characteristics

Table 14. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Reference	• Low • High	V _{REFL}	V_{SSA}	_	V _{SSA}	V	_
potential		V _{REFH}	V_{DDA}	_	V _{DDA}		
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA})	ΔV _{SSA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	_

Table continues on the next page...

Table 14. 5 V 12-bit ADC operating conditions (continued)

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz	_		_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10	1	
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

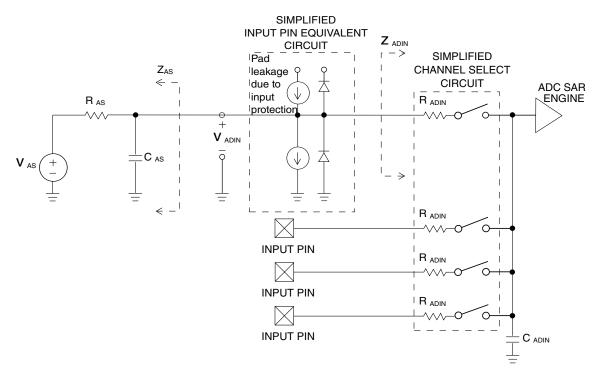


Figure 16. ADC input impedance equivalency diagram

Table 15. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							

Table continues on the next page...

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016