

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

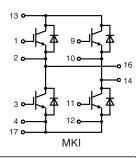
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

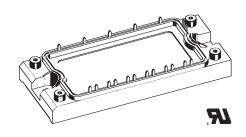
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





IGBT Modules H Bridge

Short Circuit SOA Capability Square RBSOA

 $egin{array}{lll} I_{C25} & = 65 \ A \\ V_{CES} & = 1200 \ V \\ V_{CE(sat) \, typ.} & = 3.2 \ V \end{array}$

IGBTs

Symbol	Conditions	Maximum Ra	tings
V _{CES}	T _{vJ} = 25°C to 150°C	1200	V
V _{GES}		± 20	V
I _{C25}	$T_C = 25^{\circ}C$ $T_C = 80^{\circ}C$	65 45	A A
I _{CM}	V_{GE} = ±15 V; R_{G} = 13 Ω; T_{VJ} = 125°C RBSOA; clamped inductive load; L = 100 μH	100 V _{CES}	A
t _{sc}	V_{CE} = 900 V; V_{GE} = ±15 V; R_{G} = 13 Ω ; T_{VJ} = 125°C SCSOA; non-repetitive	10	μs
P _{tot}	T _C = 25°C	350	W

Features

- Fast NPT IGBTs
- low saturation voltage
- positive temperature coefficient for easy paralleling
- fast switching
- short tail current for optimized performance also in resonant circuits
- HiPerFRED™ diode:
- fast reverse recovery
- low operating forward voltage
- low leakage current
- Industry Standard Package
 - solderable pins for PCB mounting
 - isolated copper base plate
 - UL registered, E 72873

Symbol Conditions

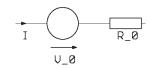
Characteristic Values (T_{VV} = 25°C, unless otherwise specified)

	(1 _{VJ} = 25 0,	min.	typ.	max.	
V _{CE(sat)}	$I_{C} = 50 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		3.2 3.8	3.8	V
V _{GE(th)}	$I_{\rm C} = 2 \text{ mA}; V_{\rm GE} = V_{\rm CE}$	4.5		6.5	V
I _{CES}	$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.5	0.7	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			500	nA
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	$\begin{cases} &\text{Inductive load, } T_{VJ} = 125^{\circ}\text{C} \\ &\text{V}_{CE} = 600 \text{ V; } I_{C} = 50 \text{ A} \\ &\text{V}_{GE} = \pm 15 \text{ V; } R_{G} = 13 \Omega \end{cases}$		130 60 360 30 6.0 2.5		ns ns ns ns mJ mJ
C _{ies} Q _{Gon}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 50 \text{ A}$		3.3 600		nF nC
R _{thJC}	(per IGBT)			0.35	K/W

Typical Applications

- motor control
 - . DC motor amature winding
- . DC motor excitation winding
- . synchronous motor excitation winding
- supply of transformer primary winding
 - . power supplies
- . welding
- . X-ray
- . battery charger

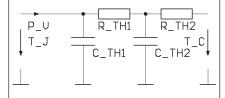
Diodes				
Symbol	Conditions	Maximum Ratings		
I _{F25}	$T_{\rm C} = 25^{\circ}{\rm C}$	110 A		
I _{F80}	$T_C = 80^{\circ}C$	70 A		


Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
V _F	$I_F = 50 \text{ A}; V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.2 1.6	2.6	V V
I _{RM}	$\begin{cases} I_F = 50 \text{ A; } di_F/dt = -500 \text{ A/}\mu\text{s; } T_{VJ} = 125^{\circ}\text{C} \\ V_R = 600 \text{ V; } V_{GE} = 0 \text{ V} \end{cases}$		40 200		A ns
R _{thJC}	(per diode)			0.61	K/W

Module					
Symbol	Conditions	Maximum R	Maximum Ratings		
T _{VJ} T _{VJM} T _{stg}	operating	-40+125 -40+150 -40+125	°C °C °C		
V _{ISOL}	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$	2500	٧~		
M _d	Mounting torque (M5)	2.7 - 3.3	Nm		

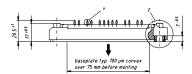
Symbol	Conditions	Characteristic Values		
		min.	typ.	max.
R _{pin-chip}			5	mΩ
d _s d _A	Creepage distance on surface Strike distance in air	6 6		mm mm
R _{thCH}	with heatsink compound		0.02	K/W
Weight			180	g

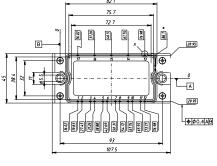
Equivalent Circuits for Simulation

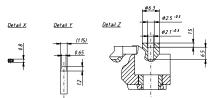

Conduction

IGBT (typ. at V_{GE} = 15 V; T_J = 125°C) V_0 = 2.05 V; R_0 = 35 $m\Omega$

Free Wheeling Diode (typ. at $T_J = 125^{\circ}C$) $V_0 = 1.3 \ V; R_0 = 6 \ m\Omega$


Thermal Response




IGBT (typ.) $C_{th1} = 0.22 \text{ J/K}; R_{th1} = 0.26 \text{ K/W}$ $C_{th2} = 1.74 \text{ J/K}; R_{th2} = 0.09 \text{ K/W}$

Free Wheeling Diode (typ.) $C_{th1} = 0.151 \text{ J/K; } R_{th1} = 0.483 \text{ K/W}$ $C_{th2} = 1.003 \text{ J/K; } R_{th2} = 0.127 \text{ K/W}$

Dimensions in mm (1 mm = 0.0394")

pins 5, 6, 7, 8 and 15 for MWI only