

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor, Inc.

Document Number: KL16P64M48SF5 Data Sheet: Technical Data Rev 5 08/2014

Kinetis KL16 Sub-Family

48 MHz Cortex-M0+ Based Microcontroller

Designed with efficiency in mind. Compatible with all other Kinetis L families as well as Kinetis K1x family. General purpose MCU featuring market leading ultra low-power to provide developers an appropriate entry-level 32-bit solution. This product offers:

- Run power consumption down to 40 μA/MHz in very low power run mode
- Static power consumption down to 2 μA with full state retention and 4.5 µs wakeup
- Ultra-efficient Cortex-M0+ processor running up to 48 MHz with industry leading throughput
- Memory option is up to 128 KB flash and 16 KB RAM
- Energy-saving architecture is optimized for low power with 90nm TFS technology, clock and power gating techniques, and zero wait state flash memory controller

MKL16ZxxxVFM4 MKL16ZxxxVFT4 MKL16ZxxxVLH4

32-pin QFN (FM) 48-pin QFN (FT) 5 x 5 x 1 Pitch 0.5 mm 7 x 7 x 1 Pitch 0.5 mm

64-pin LQFP (LH) 10 x 10 x 1.4 Pitch 0.5 mm

Performance

48 MHz ARM® Cortex®-M0+ core

Memories and memory interfaces

- Up to 128 KB program flash memory
- Up to 16 KB SRAM

System peripherals

- Nine low-power modes to provide power optimization based on application requirements
- COP Software watchdog
- 4-channel DMA controller, supporting up to 63 request Analog Modules
- · Low-leakage wakeup unit
- · SWD debug interface and Micro Trace Buffer
- Bit Manipulation Engine

Clocks

- 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator
- Multi-purpose clock source

Operating Characteristics

• Voltage range: 1.71 to 3.6 V

• Flash write voltage range: 1.71 to 3.6 V

• Temperature range (ambient): -40 to 105°C

Human-machine interface

- Low-power hardware touch sensor interface (TSI)
- Up to 54 general-purpose input/output (GPIO)

Communication interfaces

- · Two 16-bit SPI modules
- I2S (SAI) module
- One low power UART module
- Two UART modules
- · Two I2C module

- 16-bit SAR ADC
- 12-bit DAC
- · Analog comparator (CMP) containing a 6-bit DAC and programmable reference input

Timers

- Six channel Timer/PWM (TPM)
- Two 2-channel Timer/PWM modules
- Periodic interrupt timers
- 16-bit low-power timer (LPTMR)
- · Real time clock

Security and integrity modules

• 80-bit unique identification number per chip

Ordering Information ¹

Part Number	Memory		Maximum number of I\O's
	Flash (KB)	SRAM (KB)	
MKL16Z32VFM4	32	4	28
MKL16Z64VFM4	64	8	28
MKL16Z128VFM4	128	16	28
MKL16Z32VFT4	32	4	40
MKL16Z64VFT4	64	8	40
MKL16Z128VFT4	128	16	40
MKL16Z32VLH4	32	4	54
MKL16Z64VLH4	64	8	54
MKL16Z128VLH4	128	16	54

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL16P64M48SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL16P64M48SF5 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_xN15J ²
Package	Package dimensions are provided in package drawings.	QFN 32-pin: 98ASA00473D ¹
drawing		QFN 48-pin: 98ASA00466D ¹
		LQFP 64-pin: 98ASS23234W ¹

- To find the associated resource, go to http://www.freescale.com and perform a search using this term.
 To find the associated resource, go to http://www.freescale.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Table of Contents

1	Rati	ngs	4		3.6.2	CMP and 6-bit DAC electrical specifications	29
	1.1	Therm	al handling ratings4		3.6.3	12-bit DAC electrical characteristics	31
	1.2	Moistu	re handling ratings4	3.7	Timer	s	34
	1.3	ESD h	andling ratings4	3.8	Comn	nunication interfaces	34
	1.4	Voltag	e and current operating ratings4		3.8.1	SPI switching specifications	34
2	Ger	eral	5		3.8.2	Inter-Integrated Circuit Interface (I2C) timing	39
	2.1	AC ele	ectrical characteristics5		3.8.3	UART	40
	2.2	Nonsw	vitching electrical specifications5		3.8.4	I2S/SAI switching specifications	40
		2.2.1	Voltage and current operating requirements6	3.9	Huma	n-machine interfaces (HMI)	44
		2.2.2	LVD and POR operating requirements6		3.9.1	TSI electrical specifications	44
		2.2.3	Voltage and current operating behaviors7	4 Dim	nension	S	45
		2.2.4	Power mode transition operating behaviors8	4.1	Obtair	ning package dimensions	45
		2.2.5	Power consumption operating behaviors9	5 Pin	out		45
		2.2.6	EMC radiated emissions operating behaviors 14	5.1	KL16	Signal Multiplexing and Pin Assignments	45
		2.2.7	Designing with radiated emissions in mind15	5.2	KL16	pinouts	48
		2.2.8	Capacitance attributes15	6 Ord	lering p	arts	51
	2.3	Switch	ning specifications15	6.1	Deter	mining valid orderable parts	51
		2.3.1	Device clock specifications	7 Par	t identif	fication	51
		2.3.2	General switching specifications16	7.1	Descr	iption	52
	2.4	Therm	al specifications16	7.2	Forma	at	52
		2.4.1	Thermal operating requirements16	7.3	Fields		52
		2.4.2	Thermal attributes17	7.4	Exam	ple	52
3	Peri	pheral	operating requirements and behaviors17	8 Ter	minolo	gy and guidelines	53
	3.1	Core n	nodules	8.1	Defini	tion: Operating requirement	53
		3.1.1	SWD electricals17	8.2	Defini	tion: Operating behavior	53
	3.2	Systen	m modules19	8.3	Defini	tion: Attribute	53
	3.3	Clock	modules19	8.4	Defini	tion: Rating	54
		3.3.1	MCG specifications19	8.5	Resul	t of exceeding a rating	54
		3.3.2	Oscillator electrical specifications21	8.6	Relati	onship between ratings and operating	
	3.4	Memo	ries and memory interfaces23		requir	ements	54
		3.4.1	Flash electrical specifications23	8.7	Guide	lines for ratings and operating requirements	55
	3.5	Securi	ty and integrity modules24	8.8	Defini	tion: Typical value	55
	3.6	Analog	j24	8.9	Typica	al value conditions	56
		3.6.1	ADC electrical specifications24	9 Rev	ision h	istory	57

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	1	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} - 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

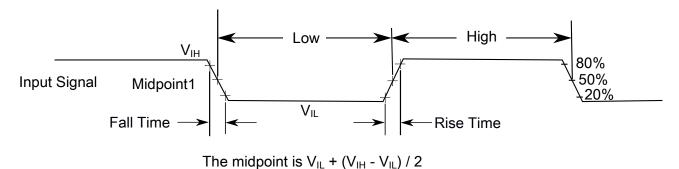


Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- $C_L=30 pF loads$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} - V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.7 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.35 \times V_{DD}$	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	0.06 × V _{DD}	_	V	
I _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{IO_MIN} (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V_{IO_MIN} - V_{IN})/II_{ICIO}I.

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1

^{2.} Open drain outputs must be pulled to V_{DD}.

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV = 01)	2.72	2.80	2.88	V	
V _{LVW3H}	• Level 3 falling (LVWV = 10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV = 00)	1.74	1.80	1.86	V	
V _{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV = 10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV = 11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

^{1.} Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET_b) • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$ • $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -2.5 \text{ mA}$	V _{DD} - 0.5 V _{DD} - 0.5	_ _	V V	1, 2
V _{OH}	Output high voltage — High drive pad (except RESET_b) • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -20 \text{ mA}$ • $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -10 \text{ mA}$	V _{DD} - 0.5 V _{DD} - 0.5	_ _	V V	1, 2
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad $ \bullet \ \ 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ I_{OL} = 5 \ mA $ $ \bullet \ \ 1.71 \ V \leq V_{DD} \leq 2.7 \ V, \ I_{OL} = 2.5 \ mA $		0.5 0.5	V V	1

Table 7. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — High drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 20 \text{ mA}$	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	3
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μΑ	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_	65	μA	3
l _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	4

^{1.} PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.

Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	106	120	μs	

^{2.} The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.

^{3.} Measured at V_{DD} = 3.6 V

^{4.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

	Table 8.	Power mode transition	operating behaviors	(continued)
--	----------	-----------------------	---------------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• VLLS1 → RUN	_	105	117	μs	
	• VLLS3 → RUN	_	47	54	μs	
	• LLS → RUN	_	4.5	5.0	μs	
	VLPS → RUN	_	4.5	5.0	μs	
	• STOP → RUN	_	4.5	5.0	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Table 9. Power consumption operating behaviors

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO_} CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V	_	6.1		mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V	_	3.8	4.4	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	4.6	5.2	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24	at 25 °C	6.0	6.2	mA	3, 4
	MHz bus and flash, all peripheral clocks enabled, code executing from	at 70 °C	6.2	6.4	mA	
	flash, at 3.0 V	at 125 °C	6.2	6.5	mA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	2.7	3.2	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	2.1	2.6	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V	_	1.5	2.0	mA	3
I _{DD_VLPRCO_CM}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V	_	732	_	μА	5
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V	_	161	329	μΑ	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	185	352	μΑ	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	255	421	μА	4, 6
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	110	281	μА	6
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	305	326	μΑ	_
		at 50 °C	317	344	μΑ	
		at 70 °C	337	380	μΑ	
		at 85 °C	364	428	μΑ	
		at 105 °C	429	553	μA	
I_{DD_VLPS}	Very-low-power stop mode current at 3.0 V	at 25 °C	2.69	4.14	μA	_
	3.0 V	at 50 °C	5.54	9.80	μΑ	
		at 70 °C	11.80	21.94	μA	
		at 85 °C	21.13	39.13	μA	
	<u> </u>	at 105 °C	45.85	85.45	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V	at 25 °C	1.98	2.65	μA	_
	ľ	at 50 °C	3.13	4.35	μA	

Table 9. Power consumption operating behaviors (continue	Table 9.	Power consumption	operating behaviors	(continued
--	----------	-------------------	---------------------	------------

Symbol	Description	Temp.	Тур.	Max	Unit	Note
		at 70 °C	5.65	8.34	μA	
		at 85 °C	9.58	14.29	μA	
		at 105 °C	20.52	31.74	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current	at 25 °C	1.46	2.06	μA	_
	at 3.0 V	at 50 °C	2.29	3.22	μA	
		at 70 °C	4.10	5.90	μA	
		at 85 °C	6.93	10.02	μA	
		at 105 °C	14.80	22.12	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current	at 25 °C	0.71	1.20	μA	_
	at 3.0V	at 50 °C	1.10	1.71	μA	
		at 70 °C	2.09	3.03	μA	
	a		3.80	5.42	μA	
		at 105 °C	8.84	12.98	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.40	0.88	μA	_
	(SMC_STOPCTRL[PORPO] = 0) at 3.0 V	at 50 °C	0.80	1.40	μA	
	3.0 V	at 70 °C	1.79	2.72	μA	
		at 85 °C	3.50	5.10	μA	
		at 105 °C	8.54	12.63	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.23	0.69	μA	7
	(SMC_STOPCTRL[PORPO] = 1) at 3.0 V	at 50 °C	0.61	1.19	μA	
	3.0 V	at 70 °C	1.59	2.50	μA	
		at 85 °C	3.30	4.89	μA	
		at 105 °C	8.36	12.41	μA	

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 6. MCG configured for BLPI mode.
- 7. No brownout.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)					Unit	
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μΑ

Table 10. Low power mode peripheral adders — typical value (continued)

Symbol	Description			T	empera	ature (°	C)		Unit
			-40	25	50	70	85	105	
I _{IREFSTEN32KHz}	32 kHz internal reference cloc Measured by entering STOP r 32 kHz IRC enabled.		52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}		, ,		228	237	245	251	258	μΑ
I _{EREFSTEN32KHz}	External 32 kHz crystal clock	VLLS1	440	490	540	560	570	580	nA
	adder by means of the OSC0_CR[EREFSTEN and	VLLS3	440	490	540	560	570	580	
	EREFSTEN] bits. Measured	LLS	490	490	540	560	570	680	
	by entering all modes with	VLPS	510	560	560	560	610	680	
	the crystal enabled.	STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.		22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.			357	388	475	532	810	n <i>A</i>
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	115200 baud rate. Includes selected clock source power consumption.	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	86	μA
	compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	OSCERCLK (4 MHz external crystal)	235	256	265	274	280	287	
I _{BG}	Bandgap adder when BGEN to device is placed in VLPx, LLS mode.		45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combin measured values at V _{DD} and V		366	366	366	366	366	366	μA

Table 10.	Low pow	er mode	peripheral	l adders –	 typical value
-----------	---------	---------	------------	------------	-----------------------------------

Symbol	Description	Temperature (°C)					Unit	
		-40	25	50	70	85	105	
	placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.							

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

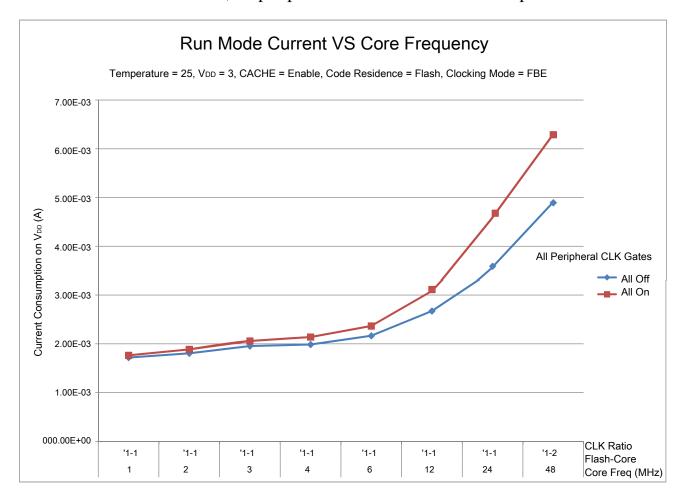


Figure 2. Run mode supply current vs. core frequency

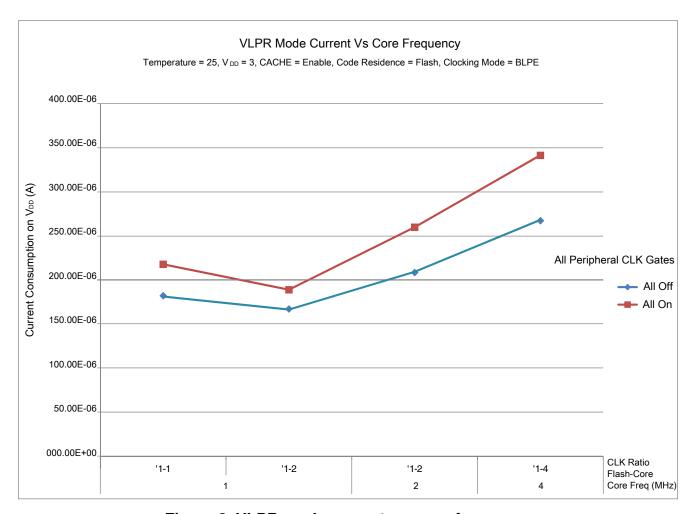


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

Table 11. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	16	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50-150	18	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	13	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	М	_	2, 3

^{1.} Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.

The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 48 \,^{\circ}\text{MHz}$, $f_{BUS} = 24 \,^{\circ}\text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode		•	•
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz

Table 13. Device clock specifications (continued)

Symbol	Description	Min.	Max.	Unit
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	_	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{UART0}	UART0 asynchronous clock	_	8	MHz

The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	_	36	ns	3

^{1.} The greater synchronous and asynchronous timing must be met.

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
T _J	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

^{2.} The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

^{2.} This is the shortest pulse that is guaranteed to be recognized.

^{3. 75} pF load

2.4.2 Thermal attributes

Table 16. Thermal attributes

Board type	Symbol	Description	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	71	83	98	°C/W	1
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	30	34	°C/W	
Single-layer (1S)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	68	82	°C/W	
Four-layer (2s2p)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	24	28	°C/W	
_	$R_{\theta JB}$	Thermal resistance, junction to board	35	12	13	°C/W	2
_	R _{0JC}	Thermal resistance, junction to case	21	2.3	2.3	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	6	5	8	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table 17. SWD full voltage range electricals (continued)

Symbol	Description	Min.	Max.	Unit
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

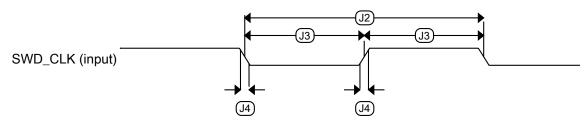


Figure 4. Serial wire clock input timing

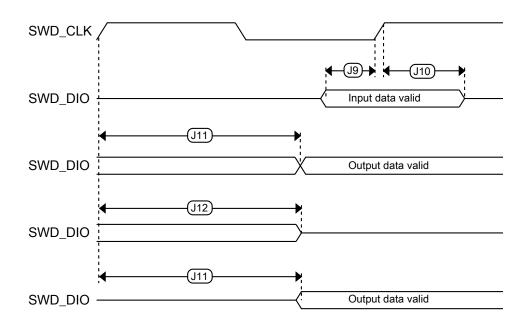


Figure 5. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Table 18. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal V _{DD} and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference user trimmed	31.25	_	39.0625	kHz		
$\Delta_{ ext{fdco_res_t}}$	Resolution of trim frequency at fixed using C3[SCTRIM	_	± 0.3	± 0.6	%f _{dco}	1	
Δf_{dco_t}		trimmed average DCO output Itage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}	Total deviation of frequency over fix range of 0–70 °C	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}	Internal reference factory trimmed a	_	4	_	MHz		
Δf_{intf_ft}	Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal V _{DD} and 25 °C		_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}		frequency (fast clock) — ominal V _{DD} and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external c	lock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz	
		Fl	_L				
f _{fII_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) $640 \times f_{fll_ref}$	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) $1280 \times f_{fil_ref}$	40	41.94	48	MHz	
dco_t_DMX3	DCO output frequency	Low range (DRS = 00)	_	23.99	_	MHz	5, 6

Table 18. MCG specifications (continued)

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97	_	MHz	
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	7
	• f _{VCO} = 48 M	1Hz					
t _{fll_acquire}	FLL target freque	ncy acquisition time	_	_	1	ms	8
		PI	_L				
f _{vco}	VCO operating fre	equency	48.0	_	100	MHz	
I _{pll}	PLL operating current • PLL at 96 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 48)		_	1060	_	μΑ	9
I _{pll}	PLL operating cur • PLL at 48 M 2 MHz, VDI	_	600	_	μΑ	9	
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					10
	• f _{vco} = 48 MH	Hz	_	120	_	ps	
	• f _{vco} = 100 N	ИНz	_	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MH	Hz	_	1350	_	ps	
	• f _{vco} = 100 N	ИНz	_	600	_	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequen	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector det	ection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

- This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, f_{ints} ft.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- 4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μΑ	
	• 16 MHz	_	950	_	μΑ	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μΑ	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μΑ	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
C _y	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Table 19. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	0	_	kΩ	
FF	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x , C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 21. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversall}	Erase All high-voltage time	-	52	452	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	_
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	88	650	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

Peripheral operating requirements and behaviors

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes	
Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2	

Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

^{2.} Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V_{DDA}	V_{DDA}	V	3
V_{REFL}	ADC reference voltage low		V_{SSA}	V _{SSA}	V _{SSA}	V	3
V_{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 * VREFH	V	_
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	5
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	5
C _{rate}	ADC conversion rate	≤ 13-bit modes					6
		No ADC hardware averaging	20.000	_	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion rate	16-bit mode					6
		No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

^{1.} Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$, unless otherwise stated. Typical values are for reference only, and are not tested in production.

^{2.} DC potential difference.

^{3.} For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA} , and V_{REFL} is internally tied to V_{SSA} .

^{4.} This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.

^{5.} To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.