imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Kinetis KL26 Sub-Family

48 MHz Cortex-M0+ Based Microcontroller

Supports ultra low power ARM based microcontroller with USB feature and ultra small Wafer Level Chip Scale Package. Ideal solution for smart phone accessories, gaming accessories, sensor hub applications, etc.

This product offers:

- Ultra small scale package 2.37mm x 2.46mm with 0.35mm pitch
- USB OTG FS 2.0
- Ultra low dynamic and static power consumption with smart peripherals for low power applications
- Highly integrated peripherals, including high speed and mixed signal interfaces, etc

Performance

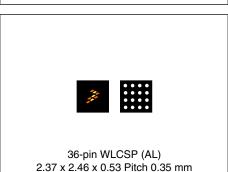
• 48 MHz ARM[®] Cortex[®]-M0+ core

Memories and memory interfaces

- Up to 128 KB program flash memory
- Up to 16 KB SRAM

System peripherals

- Nine low-power modes to provide power optimization based on application requirements
- · COP Software watchdog
- 4-channel DMA controller, supporting up to 63 request sources
- Low-leakage wakeup unit
- SWD debug interface and Micro Trace Buffer
- Bit Manipulation Engine


Clocks

- 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator
- Multi-purpose clock source

Operating Characteristics

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range (ambient): -40 to 85°C

MKL26Z128CAL4R

Human-machine interface

- · Low-power hardware touch sensor interface (TSI)
- 27 general-purpose input/output (GPIO)

Communication interfaces

- USB full-/low-speed On-the-Go controller with onchip transceiver and 5 V to 3.3 V regulator
- Two 16-bit SPI modules
- I2S (SAI) module
- One low power UART module
- Two UART modules
- Two I2C module

Analog Modules

- 16-bit SAR ADC
- 12-bit DAC
- Analog comparator (CMP) containing a 6-bit DAC and programmable reference input

Timers

- Six channel Timer/PWM (TPM)
- Two 2-channel Timer/PWM modules
- Periodic interrupt timers
- 16-bit low-power timer (LPTMR)
- · Real time clock

Security and integrity modules

• 80-bit unique identification number per chip

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2013–2014 Freescale Semiconductor, Inc. All rights reserved.

Ordering Information

Part Number	Mer	Maximum number of I\O's	
	Flash (KB)	SRAM (KB)	
MKL26Z128CAL4R	128	16	27

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL26P36M48SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL26P36M48SF5 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_xN15J ²
Package drawing	Package dimensions are provided in package drawings.	WLCSP 36-pin: 98ASA00604D1

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Table of Contents

1	Rati	ngs		.4
	1.1	Therm	al handling ratings	. 4
	1.2	Moistu	re handling ratings	.4
	1.3	ESD h	andling ratings	.4
	1.4	Voltag	e and current operating ratings	.4
2	Ger	neral		. 5
	2.1	AC ele	ectrical characteristics	.5
	2.2	Nonsw	vitching electrical specifications	.6
		2.2.1	Voltage and current operating requirements	.6
		2.2.2	LVD and POR operating requirements	. 6
		2.2.3	Voltage and current operating behaviors	.7
		2.2.4	Power mode transition operating behaviors	.8
		2.2.5	Power consumption operating behaviors	.9
		2.2.6	EMC radiated emissions operating behaviors	. 14
		2.2.7	Designing with radiated emissions in mind	. 15
		2.2.8	Capacitance attributes	. 15
	2.3	Switch	ing specifications	. 15
		2.3.1	Device clock specifications	. 15
		2.3.2	General switching specifications	.16
	2.4	Therm	al specifications	. 16
		2.4.1	Thermal operating requirements	.16
		2.4.2	Thermal attributes	
3	Peri	pheral	operating requirements and behaviors	. 17
	3.1	Core n	nodules	. 17
		3.1.1	SWD electricals	.17
	3.2	Syster	n modules	. 19
	3.3	Clock	modules	. 19
		3.3.1	MCG specifications	. 19
		3.3.2	Oscillator electrical specifications	. 21
	3.4	Memo	ries and memory interfaces	. 23
		3.4.1	Flash electrical specifications	. 23
	3.5	Securi	ty and integrity modules	.24
	3.6	Analog	9	
		3.6.1	ADC electrical specifications	
		3.6.2	CMP and 6-bit DAC electrical specifications	.29

		3.6.3 12-bit DAC electrical characteristics
	3.7	Timers
	3.8	Communication interfaces
		3.8.1 USB electrical specifications
		3.8.2 USB VREG electrical specifications
		3.8.3 SPI switching specifications35
		3.8.4 Inter-Integrated Circuit Interface (I2C) timing40
		3.8.5 UART
		3.8.6 I2S/SAI switching specifications
	3.9	Human-machine interfaces (HMI)45
		3.9.1 TSI electrical specifications45
4	Dim	ensions
	4.1	Obtaining package dimensions46
5	Pino	5ut
	5.1	KL26 Signal Multiplexing and Pin Assignments46
		KL26 pinouts
6	Ord	ering parts
	6.1	Determining valid orderable parts49
7		t identification49
		Description
		Format
		Fields
		Example
8		minology and guidelines
	8.1	Definition: Operating requirement
	8.2	Definition: Operating behavior
		Definition: Attribute
		Definition: Rating
		Result of exceeding a rating
	8.6	Relationship between ratings and operating
	07	requirements
	8.7	Guidelines for ratings and operating requirements
	8.8	Definition: Typical value
0	8.9	Typical value conditions
9	Hev	ision history54

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		1		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

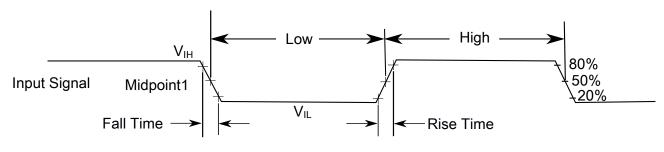
Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings


Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
$V_{USB_{DP}}$	USB_DP input voltage	-0.3	3.63	V
$V_{USB_{DM}}$	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- C_L=30 pF loads
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
VODPU V _{RAM}	V _{DD} voltage required to retain RAM	1.2		V V	2

- All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{IO_MIN} (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V_{IO_MIN} V_{IN})/II_{ICIO}I.
- 2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	 Level 1 falling (LVWV = 00) 	2.62	2.70	2.78	v	
V_{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	v	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	v	
$V_{\rm LVW4H}$	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range		±60	_	mV	-
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	-
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	 Level 1 falling (LVWV = 00) 	1.74	1.80	1.86	v	
V_{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	-
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

Table 6.	V _{DD} supply LVD and POR	operating rec	uirements ((continued)
		oporating roc		ooninaoa)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET b)				1, 2
	_ /	V _{DD} – 0.5	—	V	
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OH}} = -5 \text{ mA}$	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{I}_{\text{OH}} = -2.5 \text{ mA}$				
V _{OH}	Output high voltage — High drive pad (except				1, 2
	RESET_b)	V _{DD} – 0.5	_	V	
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -20 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -10 \text{ mA}$				
I _{OHT}	Output high current total for all ports	_	100	mA	

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA	-	0.5	v	
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 20 mA	_	0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 10 \text{ mA}$	-	0.5	v	
I _{OLT}	Output low current total for all ports		100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	3
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μΑ	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_	65	μΑ	3
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	4

Table 7. Voltage and current operating behaviors (continued)

1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

- 2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.
- 3. Measured at $V_{DD} = 3.6 V$

4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

POR and VLLSx \rightarrow RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.			300	μs	1

 Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	VLLS0 → RUN					
		_	106	120	μs	
	 VLLS1 → RUN 					
		_	105	117	μs	
	 VLLS3 → RUN 					
		_	47	54	μs	
	• LLS → RUN					
		_	4.5	5.0	μs	
	 VLPS → RUN 					
		_	4.5	5.0	μs	
	• STOP \rightarrow RUN					
		—	4.5	5.0	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUNCO_} CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V	_	6.1	_	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V	_	3.8	4.4	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V		4.6	5.2	mA	3

Table 9. Power consumption operating behaviors

Table continues on the next page...

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_RUN}	Run mode current - 48 MHz core / 24	at 25 °C	6.0	6.2	mA	3, 4
	MHz bus and flash, all peripheral clocks enabled, code executing from	at 70 °C	6.2	6.4	mA	
	flash, at 3.0 V	at 95 °C	6.2	6.5	mA	
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	2.7	3.2	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	2.1	2.6	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V	_	1.5	2.0	mA	3
I _{DD_VLPRCO_CM}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V	_	732	_	μA	5
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V		161	329	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	185	352	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V		255	421	μA	4, 6
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	—	110	281	μA	6
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	305	326	μA	_
		at 50 °C	317	344	μA	
		at 70 °C	337	380	μA]
		at 85 °C	364	428	μA]
I _{DD_VLPS}	Very-low-power stop mode current at	at 25 °C	2.69	4.14	μA	-
	3.0 V	at 50 °C	5.54	9.80	μA	1
		at 70 °C	11.80	21.94	μA]
		at 85 °C	21.13	39.13	μA]

Table 9. Power consumption operating behaviors (continued)

				•		
Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_LLS}	Low leakage stop mode current at 3.0	at 25 °C	1.98	2.65	μA	—
	V	at 50 °C	3.13	4.35	μA	
		at 70 °C	5.65	8.34	μA	
		at 85 °C	9.58	14.29	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current	at 25 °C	1.46	2.06	μA	_
	at 3.0 V	at 50 °C	2.29	3.22	μA	
		at 70 °C	4.10	5.90	μA	
		at 85 °C	6.93	10.02	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V	at 25 °C	0.71	1.20	μA	—
		at 50 °C	1.10	1.71	μA	
		at 70 °C	2.09	3.03	μA	
		at 85 °C	3.80	5.42	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.40	0.88	μA	—
	(SMC_STOPCTRL[PORPO] = 0) at 3.0	at 50 °C	0.80	1.40	μA	
	v	at 70 °C	1.79	2.72	μA	
		at 85 °C	3.50	5.10	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.23	0.69	μA	7
	(SMC_STOPCTRL[PORPO] = 1) at 3.0	at 50 °C	0.61	1.19	μA]
	↓ V	at 70 °C	1.59	2.50	μA	
		at 85 °C	3.30	4.89	μA	

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 6. MCG configured for BLPI mode.
- 7. No brownout.

Table 10.	Low power mode peripheral adders — typical value
-----------	--

Symbol	Description	Temperature (°C)				Unit	
		-40	25	50	70	85	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	μA

Symbol	Description			Tem	peratur	e (°C)		Unit
			-40	25	50	70	85	
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.		206	228	237	245	251	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock	VLLS1	440	490	540	560	570	nA
	adder by means of the OSC0_CR[EREFSTEN and	VLLS3	440	490	540	560	570	
	EREFSTEN] bits. Measured by	LLS	490	490	540	560	570	
	entering all modes with the	VLPS	510	560	560	560	610	
	crystal enabled.	STOP	510	560	560	560	610	
I _{CMP}	CMP peripheral adder measure device in VLLS1 mode with CM the 6-bit DAC and a single exten compare. Includes 6-bit DAC por consumption.	P enabled using rnal input for	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured device in VLLS1 mode with externation of the crystal enabled by means of the RTC_CR[OSCE] bit and the RT for 1 minute. Includes ERCLK32 external crystal) power consumption	ernal 32 kHz C ALARM set 2K (32 kHz	432	357	388	475	532	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	μA
	waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	μA
configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	OSCERCLK (4 MHz external crystal)	235	256	265	274	280		
I _{BG}	Bandgap adder when BGEN bit device is placed in VLPx, LLS, o		45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combinin values at V_{DD} and V_{DDA} by plac in STOP or VLPS mode. ADC is low-power mode using the inter continuous conversions.	ing the device configured for	366	366	366	366	366	μA

Table 10. Low power mode peripheral adders — typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

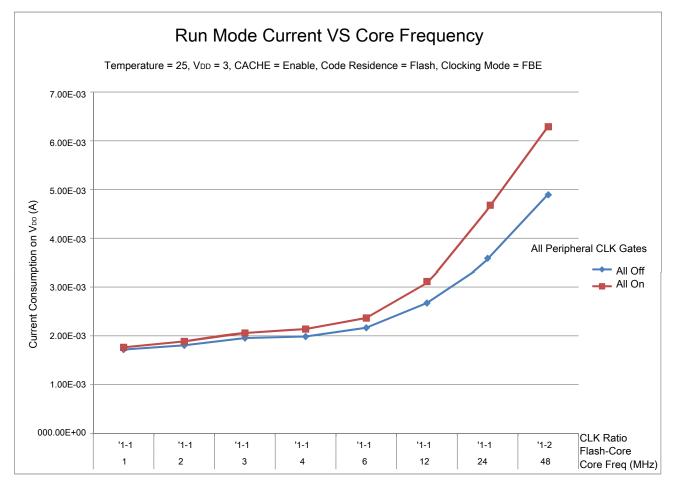


Figure 2. Run mode supply current vs. core frequency

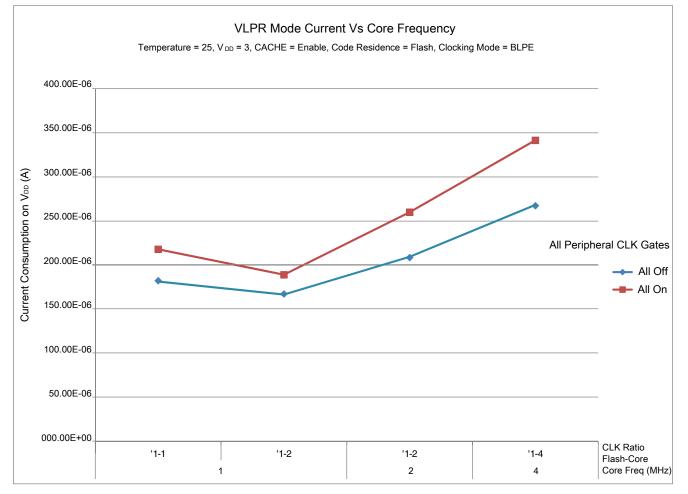


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	16	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	18	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	13	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	М		2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.

The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 8 MHz (crystal), f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			•
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	—	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock		1	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{LPTMR}	LPTMR clock ²		24	MHz

Symbol	Description	Min.	Max.	Unit
f _{ERCLK}	External reference clock	—	16	MHz
f _{LPTMR_ERCLK}	ERCLK LPTMR external reference clock		16	MHz
f _{osc_hi_2}	_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)		16	MHz
f _{TPM}	TPM asynchronous clock	—	8	MHz
f _{UART0}	UART0 asynchronous clock		8	MHz

Table 13. Device clock specifications (continued)

 The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	_	36	ns	3

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

 Table 15.
 Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	95	°C
T _A	Ambient temperature	-40	85	۵°

Board type	Symbol	Description	36 WLCSP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	59.3	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	42.9	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	51.6	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	38.9	°C/W	
—	R _{θJB}	Thermal resistance, junction to board	37.7	°C/W	2
	R _{θJC}	Thermal resistance, junction to case	0.48	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	4

2.4.2 Thermal attributes

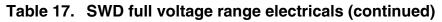
Table 16. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals


Table 17. SWD full voltage range electricals
--

Symbol	Description	Min.	Max.	Unit
	Operating voltage		3.6	V
J1	SWD_CLK frequency of operation			

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	—	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

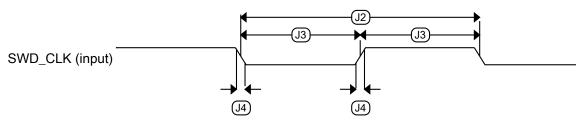
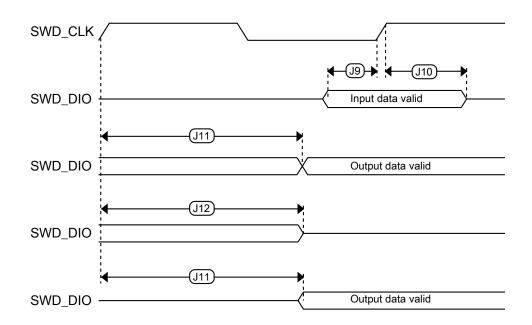



Figure 4. Serial wire clock input timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal V _{DD} and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference user trimmed	31.25	_	39.0625	kHz		
$\Delta_{fdco_res_t}$	frequency at fixed	med average DCO output voltage and temperature — I] and C4[SCFTRIM]	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of frequency over vo	_	+0.5/-0.7	± 3	%f _{dco}	1, 2	
Δf_{dco_t}	Total deviation of frequency over fix range of 0–70 °C	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}	Internal reference factory trimmed at	_	4	_	MHz		
∆f _{intf_ft}	Frequency deviati (fast clock) over te factory trimmed at	_	+1/-2	± 3	%f _{intf_ft}	2	
f _{intf_t}	Internal reference user trimmed at n	3	—	5	MHz		
f _{loc_low}	Loss of external c RANGE = 00	(3/5) x f _{ints_t}	—	—	kHz		
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	—		kHz	
		FL	L				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) $1280 \times f_{fll_ref}$	40	41.94	48	MHz	
f _{dco_t_DMX3}	DCO output frequency	Low range (DRS = 00)	_	23.99	_	MHz	5, 6

Table 18. MCG specifications

Table continues on the next page...

Kinetis KL26 Sub-Family, Rev2 08/2014.

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)		47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	—	ps	7
	• f _{VCO} = 48 M	1Hz					
t _{fll_acquire}	FLL target frequency acquisition time			_	1	ms	8
		Pl	L				
f _{vco}	VCO operating fre	48.0	—	100	MHz		
I _{pll}	PLL operating cur PLL at 96 N 2 MHz, VDI	_	1060	—	μA	9	
I _{pll}	PLL operating cur PLL at 48 N 2 MHz, VDI	_	600	_	μA	9	
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					10
	• f _{vco} = 48 MH	Hz	_	120	_	ps	
	• f _{vco} = 100 N	1Hz	_	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MH	Hz	_	1350	_	ps	
	• f _{vco} = 100 MHz		—	600	_	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequen	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector det	ection time	_	_	150×10^{-6} + 1075(1/ f _{pll_ref})	S	11

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{ft}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation
 (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	—	4	—	mA	
C _x	EXTAL load capacitance	_		_		2, 3
Cy	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—			MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10		MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	—	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	—	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	0		kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 19. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)		—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	—	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

 Table 21. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	52	452	ms	1

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	_	1.8	ms	_
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	_	μs	_
t _{ersall}	Erase All Blocks execution time	—	88	650	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	—	30	μs	1

Peripheral operating requirements and behaviors

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	—
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	—
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADC0_DPx, ADC0_DMx.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high	Absolute	V _{DDA}	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low	Absolute	V _{SSA}	V _{SSA}	V _{SSA}	V	4
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	5
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	6
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	6
C _{rate}	ADC conversion	≤ 13-bit modes					7
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					7
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

3.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

- 2. DC potential difference.
- 3. V_{REFH} is internally tied to V_{DDA} .
- 4. V_{REFL} is internally tied to V_{SSA} .
- 5. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 6. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.