imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LAPIS Semiconductor ML9272

40-Bit Vacuum Fluorescent Display Tube Grid/Anode Driver

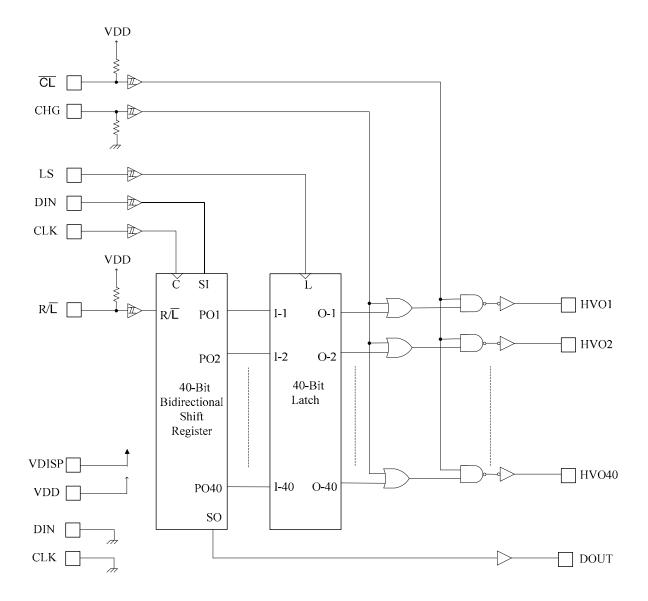
GENERAL DESCRIPTION

The ML9272 is a monolithic IC designed for directly driving the grids and anodes of the vacuum fluorescent display tube. The device contains a 40-bit bidirectional shift register, a 40-bit latch circuit, and 40-output circuit on a single chip.

Display data is serially stored in the shift register at the rising edge of a CLOCK pulse.

Setting the \overline{CL} pin low allows all the driver outputs to be driven low, which makes it possible to set the display blanking.

Also, setting both of the \overline{CL} and CHG pins high allows all the driver outputs to be driven high, which provides the easy testing of all lights after final assembly of a VFD tube panel.


The ML9272 is compatible with the MSC1162A.

FEATURES

 Logic Supply Voltage (V_{DD}) Driver Supply Voltage (V_{DISP}) 	: 3.3V±10%or5V±10% : 65V	
• Driver Output Current	: I _{OHVH1} (Only one driver output: "H")	: -40mA
	I _{OHVH2} (All the driver outputs:"H")	: -2mA
	I _{OHVL} : 1mA	
• Directly connected to VFD tube with	out pull-down resistors	
• Data transfer speed	: 5MHz	

• Package: 60-pin plastic SSOP (SSOP60-P-700-0.65-BK)(Product name: ML9272MB)

BLOCK DIAGRAM

HVO 1 1 HVO 2 2 HVO 3 3 HVO 4 4 HVO 5 5 HVO 6 6 HVO 7 7 HVO 8 8 HVO 9 9 HVO 10 10 HVO 11 11 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HO 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 19 19 HVO 10 23 CL 24 HVO 25 35 HVO 16 16 HC 28 HVO 19 19 HVO 19 20 LGND 23		
HVO 3 3 HVO 4 4 HVO 5 5 HVO 6 6 HVO 7 7 HVO 8 8 HVO 9 9 HVO 10 10 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VD 18 18 HVO 21 21 HVO 22 40 HVO 23 41 HVO 24 43 HVO 25 44 HVO 26 20 HVO 27 40 HVO 28 39 HVO 29 39 HVO 20 20 VDSF 21 HVO 20 20 VDSF 39 J-GND 23 CT 24 HVO 25 33 HVO 26	HVO 1 1	60 HVO 40
HVO 4 4 HVO 5 5 HVO 6 6 HVO 7 7 HVO 8 8 HVO 9 9 HVO 10 10 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 Voise 21 Voise 21 Voise 21 Voise 22 HVO 20 20 Voise 21 Voise 21 Voise 21 Voise 21 Voise 21 Voise 38 L-GND 23 Ct 24 NC 25 NC 25 NC 25 NC 38 L-GND 38 LGND 35	HVO 2 2	59 HVO 39
HVO 5 5 HVO 6 6 HVO 7 7 FWO 7 7 FWO 7 7 HVO 8 8 HVO 9 9 HVO 10 10 HVO 11 11 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDGND 22 HVO 20 20 VDISP 21 VDISP 23 GE 24 NC 25 <	HVO 3 3	58 HVO 38
HVO 6 6 FWO 7 7 HVO 8 8 HVO 9 9 HVO 10 10 HVO 11 11 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 D-GND 22 HVO 20 20 VDISP 21 VOISP 38 L-GND 23 CL 24 NC 25 S 26 NC 35 NC 35 S 26 NC 32 S	HVO 4 4	57 HVO 37
HVO 7 7 HVO 8 8 HVO 9 9 HVO 10 10 HVO 11 11 11 50 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDISP 21 VDISP 38 L-GND 23 GL 35 NC 25 NC 25 NC 25 NC 35 NC 25 NC 35 N	HVO 5 5	56 HVO 36
HVO 8 8 HVO 9 9 HVO 10 10 HVO 11 11 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDISP 21 D-GND 22 HVO 20 20 VDISP 21 D-GND 22 I-GND 23 CL 24 NC 25 NC 27 KRT 28 DIN 29	HVO 6 6	55 HVO 35
HVO 9 9 HVO 10 10 HVO 11 11 11 11 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDISP 21 D-GND 22 L-GND 23 CL 24 NC 25 NC 25 NC 27 R/L 28 DIN 29	HVO 7 7	54 HVO 34
HVO 10 10 HVO 11 11 11 11 HVO 12 12 HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 20 20 VDISP 21 Sold 39 D-GND 22 Sold 37 NC 25 NC 25 NC 35 NC 35 NC 35 NC 35 NC 37 NC 33 NC 33 NC 32 DIN 29	HVO 8 8	53 HVO 33
HVO 11 11 HVO 12 12 HVO 13 13 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 HVO 21 40 VDISP 21 D-GND 22 HVO 25 39 D-GND 22 GU 38 L-GND 23 CL 24 NC 25 NC 25 NC 25 NC 25 NC 25 NC 23 GL 24 HVO 20 39 D-GND 22 38 L-GND 39 D-GND 30 CLK 31 NC 32 DOUT	HVO 9 9	52 HVO 32
HVO 12 12 HVO 13 13 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDISP 21 D-GND 22 RC 25 NC 35 NC 35 NC 33 NC 27 WI 28	HVO 10 10	51 HVO 31
HVO 13 13 HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDISP 21 HVO 23 40 VDISP 21 UD-GND 22 L-GND 23 CL 24 NC 25 LGND 23 CL 24 NC 25 LGND 23 CL 24 NC 25 JS 36 CHG 35 NC 25 JS 36 CL 24 NC 35 NC 35 NC 37 NC 35 NC 31 NC 32 JNN 32	HVO 11 11	50 HVO 30
HVO 14 14 HVO 15 15 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VDISP 21 D-GND 22 L-GND 23 CL 24 NC 25 LS 26 NC 25 NC 25 NC 27 R/L 28 DIN 29	HVO 12 12	49 HVO 29
HVO 15 15 HVO 16 16 HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 VD 19 19 HVO 20 20 VD 19 19 D-GND 22 L-GND 23 CL 24 NC 25 NC 35 NC 34 CLK 33 NC 27 RT 28 DIN 29	HVO 13 13	48 HVO 28
HVO 16 16 HVO 17 17 HVO 18 18 HVO 19 19 HVO 20 20 HVO 21 40 HVO 22 40 HVO 23 39 D-GND 23 GL 37 NC 35 NC 35 NC 37 NC 37 NC 37 NC 37 NC 37 NC 37 NC 32	HVO 14 14	47 HVO 27
HVO 17 17 HVO 18 18 HVO 18 18 HVO 19 19 HVO 20 20 HVO 21 40 HVO 23 39 D-GND 23 IL-GND 35 NC 35 NC 37 NC 37 NC 37 IL-GND 31 IL-GND 32 </td <td>HVO 15 15</td> <td>46 HVO 26</td>	HVO 15 15	46 HVO 26
HVO 18 18 HVO 18 18 HVO 19 19 HVO 20 20 Join 20 39 DIN 29 30	HVO 16 16	45 HVO 25
HVO 19 19 HVO 20 20 VDISP 21 VDISP 21 D-GND 22 L-GND 23 CL 24 NC 25 LS 26 NC 27 R/L 28 DIN 29	HVO 17 17	44 HVO 24
HVO 20 20 41 HVO 21 VDISP 21 40 VDISP D-GND 22 39 D-GND L-GND 23 38 L-GND CL 24 37 NC NC 25 36 CHG LS 26 35 NC NC 27 34 CLK R/L 28 33 NC DIN 29 32 DOUT	HVO 18 18	43 HVO 23
VDISP 21 40 VDISP D-GND 22 39 D-GND L-GND 23 38 L-GND CL 24 37 NC NC 25 36 CHG LS 26 35 NC NC 27 34 CLK R/L 28 33 NC DIN 29 32 DOUT	HVO 19 19	42 HVO 22
D-GND 22 L-GND 23 GL 24 NC 25 LS 26 NC 27 R/L 28 DIN 29	HVO 20 20	41 HVO 21
L-GND 23 CL 24 NC 25 LS 26 NC 27 RT 28 DIN 29 CL 24 38 L-GND 37 NC 36 CHG 35 NC 34 CLK 33 NC 32 DOUT	V _{DISP} 21	40 V _{DISP}
CL 24 NC 25 LS 26 NC 27 R/L 28 DIN 29	D-GND 22	39 D-GND
NC 25 LS 26 NC 27 R/L 28 DIN 29	L-GND 23	38 L-GND
LS 26 NC 27 R/L 28 DIN 29 LS 26 35 NC 34 CLK 33 NC 32 DOUT	\overline{CL} 24	37 NC
NC 27 R/L 28 DIN 29	NC 25	36 CHG
R/L 28 DIN 29 33 NC 32 DOUT	LS 26	35 NC
DIN 29 DOUT	NC 27	34 CLK
	R/\overline{L} 28 ()	33 NC
V _{DD} 30 31 V _{DD}	DIN 29	32 DOUT
	V _{DD} 30	31 V _{DD}

PIN CONFIGURATION (TOP VIEW)

NC: No-connection pin

60-Pin Plastic SSOP

PIN DESCRIPTION

Symbol	Туре	Description
CLK	I	Shift register clock input pin. Shift register reads data through DIN while the CLK pin is in a low state and the data in the shift register is shifted from one stage to the next stage at the rising edge of the clock.
DIN	Т	Serial data input pin of the shift register. Display data (positive logic) is input through the DIN pin in synchronization with clock.
DOUT	о	Serial data output pin of the shift register. Data is output through the DOUT pin in synchronization with the CLK signal. When $R/L =$ High, the data of PO40 in the shift register is output through the DOUT pin. When $R/L =$ Low, the data of PO1 in the shift register is output through the DOUT pin.
LS	I	Latch strobe input pin When LS is high, the parallel output data (PO1-40) of the shift register read out. When LS goes from high to low, the parallel output data (PO1-40) of the shift register is held.
CL	I	Clear input pin with a built-in pull-up resistor The \overline{CL} pin is normally being set high. If the \overline{CL} pin is high and the CHG pin is low, the driver outputs (HV01 to HV40) are in phase with the corresponding latch outputs (O1 to O40). If the \overline{CL} pin is high and the CHG pin is high, the driver outputs (HV01 to HV40) are high irrespective of the states of the latch outputs. If the \overline{CL} pin is set low, the driver outputs are driven low irrespective of the states of the CHG pin and latch outputs. This allows display blanking to be set.
CHG	I	Input for testing (with a pull-down resistor) The CHG pin is normally being set low. If the CHG pin is low and the CL pin is high, the driver outputs (HV01 to HV40) are in phase with the corresponding latch outputs (O1 to O40). If the CHG pin is low and the CL pin is low, the driver outputs (HV01 to HV40) are low irrespective of the states of the latch outputs. If the CHG pin is set high and the CL pin is high, the driver outputs are driven high irrespective of the states of the latch outputs. This provides the easy testing of all lights after final assembly.
HVO1-40	ο	High voltage driver outputs for driving a VFD tube The driver outputs are in phase with the corresponding latch outputs (O1 to O40). The direct connection to the grid or anode of a VFD tube eliminates pull-down resistors.
V _{DISP}		Power supply pin for driver circuits of VFD tube
V _{DD}		Power supply pin for logic
D-GND		GND pin for driver circuits of a VFD tube. (D-GND) Since the D-GND is not connected to L-GND, connect this pin to the external L-GND.
L-GND		GND pin for logic circuits. (L-GND) Since the L-GND pin is not connected to D-GND, connect this pin to the external D-GND.
R/L	I	Data shift direction control pin with a built-in pull-up resistor. When R/L = High, the data shifts from shift register PO1 to shift register PO40. When R/L = Low, the data shifts from shift register PO40 to shift register PO1.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Logic Supply Voltage *1	V_{DD}	Applicable to the logic supply pin	–0.3 to +6.5	V
Driver Supply Voltage *1, *2	V _{DISP}	Applicable to the driver supply pin	–0.3 to +70	V
Input Voltage	V _{IN}	Applicable to all input pins	–0.3 to V _{DD} +0.3	V
Data Output Voltage	V ₀₁	Applicable to the data output pin	–0.3 to V _{DD} +0.3	V
Driver Output Voltage	V _{O2}	Applicable to the driver output pin	–0.3 to $V_{\text{DISP}}\text{+}0.3$	V
Power Dissipation	PD	Ta ≤ 105°C	266	mW
Package Thermal Resistance *3	Rj-a	_	75	°C/W
Storage Temperature	T _{STG}	_	–55 to +150	°C
Output Current	I _{O1}	HVO1 to HVO40	-50.0 to 2.0	m۸
Output Current	I _{O2}	DOUT	-2.0 to 2.0	mA

Notes: *1 Maximum Supply Voltage with respect to L-GND and D-GND

*2 Permanent damage may be caused if the voltage is supplied over the rating value.

*3 Package Thermal Resistance (between junction and ambient)

The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C. Tj= $P \times Rj$ -a + Ta (P: Maximum power dissipation)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (1) V _{DD}		When the power supply voltage is 5.0 V (typ.)		5.0	5.5	V
Supply Voltage (1)	VDD	When the power supply voltage is 3.3 V (typ.)	3.0	3.3	3.6	V
Supply Voltage (2)	V _{DISP}	Applicable to the driver supply voltage pin	10	_	65	V
CLOCK Frequency	f _{CLK}	See the timing diagram	_	—	5	MHz
Operating Temperature	Та	_	-40	_	105	°C

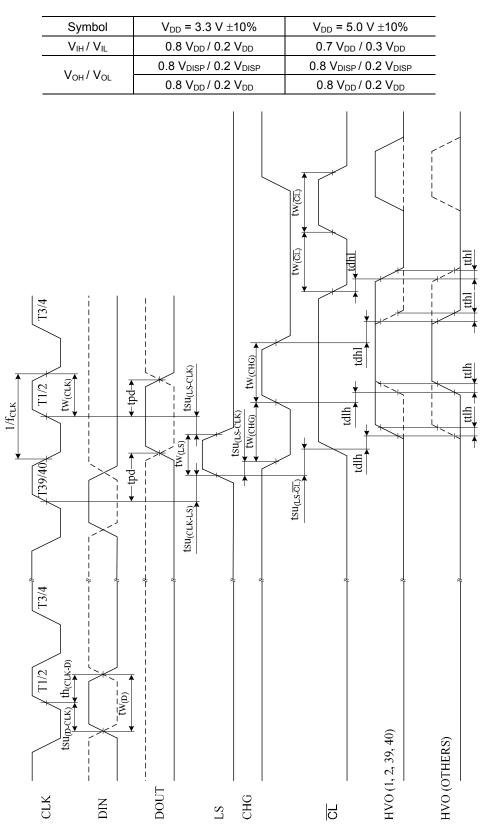
ELECTRICAL CHARACTERISTICS

DC Characteristics

(V _{DD} = 3.0 to 3.6V or 4.5 to 5.5V, V _{DISP} =							= -40 (0 +1	
Parameter	Symbol		Condition		Min.	Тур.	Max.	Unit
High Level Input Voltage	VIH	All inputs	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		0.8 V _{DD}	_		V
	VIH		V _{DD} = 3.3	$V \pm 10$ %	0.8 V _{DD}			V
Low Level Input Voltage	V	All inputs	V _{DD} = 5.0	$V \pm 10$ %	_		0.2V _{DD}	V
	V _{IL}	All inputs	V _{DD} = 3.3	$V \pm 10$ %	_	—	$0.2V_{\text{DD}}$	V
	I _{IH1}		CHG pin	V _{DD} = 5.0V	5	—	120	μA
High Level Input Current	UH1	$V_{I} = V_{DD}$		V _{DD} = 3.3V	2.5		40	μA
	I _{IH2}		Other in	put pins	–1	_	1	μA
			\overline{CL} , $\overline{R/L}$ pin	V _{DD} = 5.0V	-80	—	-5	μA
Low Level Input Current	I _{IL1}	V ₁ = 0V	GL, R/L pin	V _{DD} = 3.3V	-40	—	-2.5	μA
	I _{IL2}		Other input pins		-1	_	1	μA
	V _{OH1-1}	HVO1 to HVO40	VDISPE 65V		V _{DISP} -5.0	_		V
Driver High Level Output Voltage	V _{OH1-2}	HVO1 to HVO40	I _{OH1-2} = –2.0mA, VDISP= 65V All outputs are high		V _{DISP} -0.7	_	_	v
	V _{OH2}	DOUT	I _{ОН2} = –	I _{OH2} = –0.1mA		_	_	V
Driver Low Level Output	V _{OL1}	HVO1 to HVO40	I _{OL1} = 1	I _{OL1} = 1.0mA		_	3.0	V
Voltage	V _{OL2}	DOUT	I _{OL2} =	0.1mA	—	_	1.0	V
			V _{DD} = 5 Input Data =		_	_	2.5	mA
Supply Current (1) (Dynamic Mode)	I _{DD}	V _{DD}	V _{DD} = 3		_	_	2.0	mA
	I _{DISP}	V _{DISP}	Input Data =	- "1" "0" "1"	_	_	0.5	mA
	I _{DDS1}	V _{DD}	No Ope Ta =				1.0	μA
Supply Current (2)	I _{DDS2}	V DD	No Ope Ta =	eration 85°C			10.0	μA
(Static Mode)	I _{DISPS1}		No Ope Ta =	eration	—	_	1.0	μA
	I _{DISPS2}	V _{DISP}	No Ope Ta =	eration 85°C	_	_	20.0	μA

$(V_{DD} = 3.0 \text{ to } 3.6 \text{V or } 4.5 \text{ to } 5.5 \text{V}, V_{DISP} = 10 \text{ to } 65 \text{V}, \text{ Ta} = -40 \text{ to } +105^{\circ}\text{C})$

LAPIS Semiconductor


ML9272

AC Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
CLOCK Pulse Width	t _{W(CLK)}	—	75	_	_	ns
DATA Setup Time	t _{SU(D-CLK)}	—	80	_		ns
DATA Hold Time	t _{H(CLK-D)}	—	50	_		ns
Latch Probe Pulse Width	tw _(LS)	—	80	_		ns
CHG Pulse Width	tw _(CHG)	—	6	_		μS
CL Pulse Width	tw _(CL)	—	6	_		μS
CLK-LS Delay Time	tsu _(CLK-LS)	—	50	_		ns
LS-CLK Delay Time	tsu _(LS-CLK)	—	0	_	_	ns
LS-CHG Delay Time	tsu _(LS-CHG)	—	0	_		μS
LS-CL Delay Time	$tsu_{(LS-\overline{CL})}$	—	0	_		μS
DATA OUT Delay Time	t _{PD}	C ₁₁ = 30 pF	_	_	300	ns
	t _{DLH}	C _{I d} = 100 pF	_	0.3	1.0	μS
All Output Delay Time	t _{DHL}	t _R = 20 to 80% t _F = 80 to 20%	_	2.0	5.0	μs
All Output Slow Pato	t _{TLH}	C _{l d} = 100 pF t _B = 20 to 80%	_	0.3	1.0	μs
All Output Slew Rate	t_{THL}	$t_{\rm F} = 20 \text{ to } 80\%$ $t_{\rm F} = 80 \text{ to } 20\%$	_	2.0	5.0	μS

$(V_{DD} = 3.0 \text{ to } 3.6 \text{V or } 4.5 \text{ to } 5.5 \text{V}, V_{DISP} = 10 \text{ to } 65 \text{V}, \text{Ta} = -40 \text{ to } +105^{\circ}\text{C})$

TIMING DIAGRAM

FUNCTIONAL DESCRIPTION

Function Table

Shift register

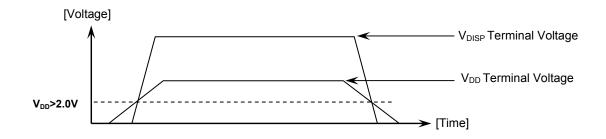
	Input		Shift Register Parallel Out			Output		
CLK	R/L	DIN	PO1	PO2		PO39	PO40	DOUT
_	Х	Х	Not changed		Not changed			
	Н	L	L	PO1n		PO38n	PO39n	PO40
	Н	Н	Н	PO1n		PO38n	PO39n	PO40
	L	L	PO2n	PO3n		PO40n	L	PO1
	L	Н	PO2n	PO3n		PO40n	Н	PO1

X: Don't Care

PO1n to PO40n: PO1 to PO40 data just before CLOCK rises.

Latch

rallel Out Latch Output Om Not changed			
Not changed			
L			
Н			
н			


X: Don't Care, m: 1 to 40

Driver output

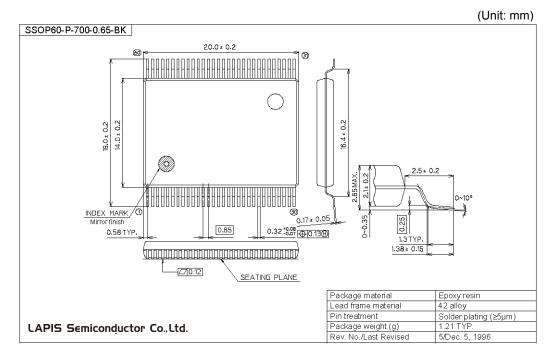
Inp	out	Latch Output	Driver Output
CL	CHG	Om	HVOm
L	Х	Х	L
Н	н	Х	Н
Н	L	L	L
Н	L	Н	Н

X: Don't Care, m: 1 to 40

POWER-ON/OFF TIMING

To prevent IC from malfunctioning, V_{DISP} should be applied after V_{DD} is applied. When turning off the power, V_{DD} should be applied after V_{DISP} is applied.

NOTES ON USE


- 1. Connect D-GND to L-GND externally to be an equal potential voltage.
- 2. The contents of the shift register are undefined when the power is applied.

Therefore, unnecessary driver outputs may be driven high just after power-on, and the VFD tube may flicker.

To avoid this, follow the procedures:

- 1) Apply the driver power supply after applying the logic power supply, with the \overline{CL} pin remained low.
- 2) Start displaying by setting the \overline{CL} pin high after putting display data from the shift register through the DIN pin.

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Pa	ge	
Document No.	Date	Previous Edition	Current Edition	Description
PEDL9272-01	Dec. 21, 2005	-	-	Preliminary edition 1
		1	1	I_{OHVH2} (All the driver outputs:"H") : -7mA \rightarrow –2mA
PEDL9272-02	EDL9272-02 Mar. 17, 2006	7	7	$\begin{array}{ll} I_{\text{IH1}} & \text{MAX 80}\mu A \ \rightarrow \ 120\mu A \\ V_{\text{OH1-1}} & \text{MIN } V_{\text{DISP}}\text{-}4.0V \ \rightarrow V_{\text{DISP}}\text{-}5.0V \\ V_{\text{OH1-2}} & \text{Condition } I_{\text{OH1-2}} = -7.0\text{mA} \ \rightarrow \ -2.0\text{mA} \end{array}$
			8	CHG Pulse Width , \overline{CL} Pulse Width Min 2µs \rightarrow 6µs
FEDL9272-02	April. 27, 2006	-	_	Final edition 1

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2006 - 2011 LAPIS Semiconductor Co., Ltd.