: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MLX92221-AAA
2-Wire Hall Effect Latch

Application Examples

\author{

- Automotive, Consumer and Industrial
 - Wiper motor
 - Window lifter
 - Seatbelt buckle
 - Seat positioning
 - Sunroof/Tailgate opener
 - Electrical power steering
}

Features and Benefits

- Wide operating voltage range: from 2.7 V to 24 V
\square Integrated self-diagnostics
- Chopper-stabilized amplifier stage
- Programmable Built-in negative temperature coefficient
\square Reverse Supply Voltage Protection
- Under-Voltage Lockout Protection
- Thermal Protection
- High ESD rating / Excellent EMC performance

Ordering Information

Ordering Information			
Part No.	Temperature Code		Package Code
MLX92221LUA-AAA-xxx-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO92-3L)	Comment
MLX92221LSE-AAA-xxx-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-23)	BU (Bulk)
			RE (Reel)

1 Functional Diagram

2 General Description

The Melexis MLX92241 is a new generation of Halleffect switches designed in mixed signal submicron CMOS technology.

The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and a current sink-configured output driver, all in a single package.

Based on a brand new platform, the magnetic core is using an improved offset cancellation system allowing faster and more accurate processing while being temperature insensitive and stress independent. In addition a temperature coefficient is implemented to compensate the natural behaviour of certain types of magnets becoming weaker with rise in temperature.

The included voltage regulator operates from 2.7 to 24 V , hence covering a wide range of applications. With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7 V while being reverse voltage tolerant.

In an event of a drop below the minimum supply voltage during operation, the under-voltage lock-out protection will automatically freeze the device, preventing the electrical perturbation to affect the magnetic measurement circuitry. The output current state is therefore only updated based on a proper and accurate magnetic measurement result.

The two-wire interface not only saves one wire, but also allows implementation of diagnostic functions as reverse polarity connection and malfunction detection. The on-chip thermal protection also switches off the output if the junction temperature increases above an abnormally high threshold. It will automatically recover once the temperature decreases below a safe value.

With latching magnetic characteristics the supply current state is turned high by a sufficiently strong South Pole facing the package branded side. Toggling the state of the supply current from high to low is possible by applying low or no magnetic field.

The MLX92221 is delivered in a Green and RoHS compliant Plastic Single-in-Line (TO-92 flat) for through-hole mount or PCB-less design or in 3-pin Thin Small Outline Transistor (TSOT) for surface mount process MLX92221-AAA

2-Wire Hall Effect Latch

Table of Contents

1 Functional Diagram 1
2 General Description 1
3 Absolute Maximum Ratings 3
4 General Electrical Specifications 4
5 Specifications 5
5.1 MLX92221LSE-AAA-001 5
5.2 MLX92221LSE-AAA-002 5
5.3 MLX92221LSE-AAA-003 5
5.4 MLX92221LUA-AAA-004 5
5.5 MLX92221LUA-AAA-005 6
5.6 MLX92221LUA-AAA-006 6
6 Magnetic Behaviour 7
6.1 Latch sensor 7
7 Performance Graphs 8
7.1 Iofflow vs. T_{J}. 8
$7.2 I_{\text {IFFHigh }}$ vs. T_{J} 8
7.5 Ion vs. T_{J} 8
$7.4 l_{\text {OFFLow }}$ vs. $V_{D D}$ 8
7.5 IOFFHigh vs. VDD 8
7.6 Ion vs. VDD 8
7.7 VDD de-rating UA package 9
7.8 V ${ }_{D D}$ de-rating TSOT package 9
8 Application Information 10
8.1 Typical Automotive Application Circuit 10
8.2 Automotive and Harsh, Noisy Environments Application Circuit 10
8.3 Strobing $V_{D D}$ application (used for reduced self-heating). 10
9 Standard information regarding manufacturability of Melexis products with different soldering processes 11
10 ESD Precautions 11
11 Package Information 12
11.1 UA (TO92-3L) 12
11.2 SE (TSOT-3L) Package Information 13
12 Disclaimer 14

3 Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply Voltage ${ }^{(1,2)}$	$V_{\text {D }}$	+27V	V
Supply Current (1, ${ }^{\text {, 3 }}$)	I_{DD}	+20	mA
Supply Current (1, 3, 4)	I_{DD}	+50	mA
Reverse Supply Voltage (1,2)	$V_{\text {dorev }}$	-24	V
Reverse Supply Current (1, ${ }^{\text {, 5 }}$)	I DDREV	-20	mA
Reverse Supply Current (1,4,5)	I DDREV	-50	mA
Maximum Junction Temperature ${ }^{(6)}$	T_{J}	+165	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	TA	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ts	$-55+165$	${ }^{\circ} \mathrm{C}$
ESD Sensitivity - HBM ${ }^{(7)}$	-	3000	V
ESD Sensitivity - MM ${ }^{(8)}$	-	400	V
ESD Sensitivity - CDM ${ }^{(9)}$	-	1000	V
Magnetic Flux Density	B	Unlimited	mT

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[^0]
4 General Electrical Specifications

DC Operating Parameters $V_{D D}=2.7$ to $24 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
Supply Voltage	$V_{D D}$	Operating	2.7	-	24	V
Reverse Supply Current	IDDREV	$V_{D D}=-16 \mathrm{~V}$			1	mA
OFF Supply Current	lofflow	$V_{D D}=3.5$ to 24 V	2	3.3	5	mA
OFF Supply Current	loffrigh	$V_{D D}=3.5$ to 24 V	5	6	6.9	mA
ON Supply Current	Ion	$V_{D D}=3.5$ to 24 V	12	14.5	17	mA
Safe Mode Supply Current	ITP	Thermal Protection activated	-	-	0.8	mA
Supply Current Rise/Fall Time ${ }^{(2)}$	trise/Fall	$V_{D D}=12 \mathrm{~V}, C_{L O A D}=50 \mathrm{pF}$ to GND	0.1	0.3	1	$\mu \mathrm{s}$
Power-On Time ${ }^{(3,4,5)}$	ton	$V_{D D}=5 \mathrm{~V}, \mathrm{dV} \mathrm{V}_{\text {d }} \mathrm{dt}>2 \mathrm{~V} / \mathrm{us}$	-	40	70	$\mu \mathrm{s}$
Chopping Frequency	fchop		260	340	-	kHz
Delay time ${ }^{(2,6)}$	to	Average value for 1000 successive switching events @10kHz, Square wave with $\mathrm{B} \geq 3^{*}$ Bopmax, trise $=$ trall ≤ 20 us	-	7.5	-	$\mu \mathrm{s}$
Output Jitter (p-p) ${ }^{(2,7)}$	tıitter	Square wave with $B \geq 3^{*}$ Bopmax over 1000 successive switching events @1kHz	-	± 3.3	-	$\mu \mathrm{s}$
Maximum Switching Frequency (2,8$)$	fsw	$\mathrm{B} \geq 3^{*}$ Bopmax and square wave magnetic field	30	50	-	kHz
Under-voltage Lockout Threshold	VuvL		-	2	2.7	V
Under-voltage Lockout Reaction time ${ }^{(2)}$	tuvi		-	1	-	$\mu \mathrm{s}$
Thermal Protection Threshold	Tprot	Junction temperature	-	$190{ }^{(9)}$	-	${ }^{\circ} \mathrm{C}$
Thermal Protection Release	Trel	Junction temperature	-	$180{ }^{(9)}$	-	${ }^{\circ} \mathrm{C}$
Safe Mode Supply Current	ITP	Thermal Protection activated	-	-	0.8	mA
UA Package Thermal Resistance	$\mathrm{R}_{\text {TH }}$	Single layer (1S) Jedec board, zero LFPM		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$
TSOT Package Thermal Resistance	$\mathrm{R}_{\text {TH }}$	Single layer (1S) Jedec board, zero LFPM		300		${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^1]MLX92221-AAA
2-Wire Hall Effect Latch

5 Specifications

5.1 MLX92221LSE-AAA-001

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$

Test Condition	Operating Point B_{op} (mT)			Release Point B_{RP} (mT)			$\begin{gathered} \mathrm{TC} \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { loff } \\ & (\mathrm{mA}) \end{aligned}$	Active Pole
	Min	Typ ${ }^{(10)}$	Max	Min	Typ ${ }^{(10)}$	Max	Typ ${ }^{(10)}$	Typ ${ }^{(10)}$	
$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	7.4	11.8	16.3	-7.4	-11.8	-16.3	0	6	South pole
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	7.4	11.8	16.3	-7.4	-11.8	-16.3			
$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	7.4	11.8	16.3	-7.4	-11.8	-16.3			

5.2 MLX92221LSE-AAA-002

DC Operating Parameters $V_{D D}=3.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point B_{PP} (mT)			$\begin{gathered} \mathrm{TC} \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Ioff } \\ & \text { (mA) } \end{aligned}$	Active Pole
	Min	Typ ${ }^{(10)}$	Max	Min	Typ ${ }^{(10)}$	Max	Typ ${ }^{(10)}$	Typ ${ }^{(10)}$	
$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	4.1	6.8	9.6	-9.6	-6.8	-4.1	-2000	6	South pole
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	4.1	6	7.9	-7.9	-6	-4.1			
$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	1.8	4.5	7.1	-7.1	-4.5	-1.8			

5.3 MLX92221LSE-AAA-003

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point B_{RP} (mT)			$\begin{gathered} \mathrm{TC} \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Ioff } \\ & \text { (mA) } \end{aligned}$	Active Pole
	Min	Typ ${ }^{(10)}$	Max	Min	Typ ${ }^{(10)}$	Max	Typ ${ }^{(10)}$	Typ ${ }^{(10)}$	
$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	0.5	2	3.2	-3.2	-2	-0.5	0	6	South pole
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.8	1.8	2.8	-2.8	-1.8	-0.8			
$\mathrm{T}_{J}=150^{\circ} \mathrm{C}$	0.3	1.8	3.3	-3.3	-1.8	-0.3			

5.4 MLX92221LUA-AAA-004

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$

$\begin{gathered} \text { Test } \\ \text { Condition } \end{gathered}$	Operating PointBop (mT)			$\begin{aligned} & \text { Release Point } \\ & \mathrm{B}_{\mathrm{RP}}(\mathrm{mT}) \end{aligned}$			$\stackrel{\mathrm{TC}}{\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)}$	$\begin{aligned} & \text { loff } \\ & (\mathrm{mA}) \end{aligned}$	Active Pole
	Min	Typ ${ }^{(10)}$	Max	Min	Typ ${ }^{(10)}$	Max	Typ ${ }^{(10)}$	Typ ${ }^{(10)}$	
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	4.1	6.8	9.6	-9.6	-6.8	-4.1	-1100	6	South pole
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.1	6	7.9	-7.9	-6	-4.1			
$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	1.8	4.5	7.1	-7.1	-4.5	-1.8			

5.5 MLX92221LUA-AAA-005

DC Operating Parameters $V_{D D}=3.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $\mathrm{B}_{\mathrm{RP}}(\mathrm{mT})$			$\begin{gathered} \mathrm{TC} \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { loff } \\ & \text { (mA) } \end{aligned}$	Active Pole
	Min	Typ ${ }^{(10)}$	Max	Min	Typ ${ }^{(10)}$	Max	Typ ${ }^{(10)}$	Typ ${ }^{(10)}$	
$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	0.5	2	3.2	-3.2	-2	-0.5	0	6	South pole
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.8	1.8	2.8	-2.8	-1.8	-0.8			
$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	0.3	1.8	3.3	-3.3	-1.8	-0.3			

5.6 MLX92221LUA-AAA-006

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$ to $9.3 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{\text {RP }}(\mathrm{mT})$			$\begin{gathered} \mathrm{TC} \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Ioff } \\ & (\mathrm{mA}) \end{aligned}$	Active Pole
	Min	Typ ${ }^{(10)}$	Max	Min	Typ ${ }^{(10)}$	Max	Typ ${ }^{(10)}$	Typ ${ }^{(10)}$	
$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	-0.5	1.25	2	-2	-1.25	0.5	0	6	South pole
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0	0.8	1.6	-1.6	-0.8	0			
$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-0.5	1.25	2	-2	-1.25	0.5			

6 Magnetic Behaviour

6.1 Latch sensor

Pole Active	Remark
South	Fig.1
North	Fig.2

Note: Latch sensors are inherently Direct South or Direct North Pole Active only.

Fig. 1 -South Pole Active

Fig. 2 -North Pole Active

MLX92221-AAA
2-Wire Hall Effect Latch

7 Performance Graphs

7.1 Iofflow vs. \boldsymbol{T}_{J}

7.2 $\boldsymbol{I}_{\text {OFFHigh }}$ vs. $\boldsymbol{T}_{\boldsymbol{J}}$

7.5 Ion vs. $\boldsymbol{T}_{\boldsymbol{J}}$

7.4 Iofflow vs. VD

7.5 $I_{\text {OFFHigh }}$ vs. $V_{D D}$

$7.6 I_{O N}$ vs. $V_{D D}$

7.7 VDD de-rating UA package

7.8 VDD de-rating TSOT package

MLX92221-AAA
2-Wire Hall Effect Latch

8 Application Information

8.1 Typical Automotive Application Circuit

Notes:

1. For proper operation, a 10 nF bypass capacitor should be placed as close as possible to the $V_{D D}$ and ground(GND) pii For complete emissions protection a $\mathrm{C} 1=68 \mathrm{nF}$ is recommended.
2. The TEST pin is to be left open or connected to GND.

8.2 Automotive and Harsh, Noisy Environments Application Circuit

ECU

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the $V_{D D}$ and ground pin.
2. The device could tolerate negative voltage down to -24 V , so if negative transients over supply line $\mathrm{V}_{\text {PEAK }}<-29 \mathrm{~V}$ are expected, usage of the diode D 1 is recommended. Otherwise only $\mathrm{R}_{\text {SENSE }}$ is sufficient.
When selecting the resistor $\mathrm{R}_{\text {SENSE }}$, three points are important:

- the resistor has to limit $I_{D D} / I_{\text {DDREV }}$ to 50 mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions ($\mathrm{V}_{\text {RSENSE }}{ }^{2} / \mathrm{R}_{\text {SENSE }}$)
- the resulting device supply voltage $V_{D D}$ has to be higher than $V_{D D}$ min ($\left.\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{\text {SENSE }} . \mathrm{I}_{\mathrm{DD}}\right)$

3. The device could tolerate positive supply voltage up to +27 V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with $\mathrm{V}_{\text {PEAK }}>32 \mathrm{~V}$ are expected, usage a zener diode DZ1 is recommended. The $\mathrm{R}_{\text {SENSE }}-\mathrm{DZ1}$ network should be sized to limit the voltage over the device below the maximum allowed.
8.3 Strobing $V_{D D}$ application (used for reduced self-heating)

Notes:

1. Given strobe timing is exemplary only.
2. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.

MLX92221-AAA
2-Wire Hall Effect Latch

9 Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Sㅜurface $\underline{M} o u n t ~ \underline{D e v i c e s) ~ a n d ~ T H D ' s ~(T h r o u g h ~ H o l e ~ D e v i c e s) ~}$

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (SUrface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.
http://www.melexis.com/Assets/Soldering-Application-Note-and-Recommendations-5446.aspx
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx

10 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

11 Package Information

11.1 UA (TO92-3L)

Notes:

1. All dimensions are in millimeters
2. Package dimension exclusive molding flash.
3. The end flash shall not exceed 0.127 mm on the top side.

Marking:

$1^{\text {st }}$ Line : xxx - last three digits from lot number
$2^{\text {nd }}$ Line : yww
y - last digit of year
ww - calendar week

Hall plate location

Notes:

1. All dimensions are in millimeters

Pin №	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	TEST	I/O	Analog \& Digital I/O

11.2 SE (TSOT-3L) Package Information

SE Pin №	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	TEST	I/O	Analog \& Digital I/O
3	GND	Ground	Ground pin

Table 1: SE Package pinout
Note: Test pin to be left open or connected to GND in the application

MLX92221-AAA
2-Wire Hall Effect Latch

12 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services. © 2012 Melexis NV. All rights reserved.

For the latest version of this document, go to our website at www.melexis.com

Or for additional information contact Melexis Direct:

Europe, Africa:	Americas:	Asia:
Phone: +3213670495	Phone: $+1248-306-5400$	Phone: +3213670495
E-mail: sales europe@melexis.com	E-mail: sales usa@melexis.com	E-mail: sales asia@melexis.com

ISO/TS 16949 and ISO14001 Certified

[^0]: ${ }^{1}$ The maximum junction temperature should not be exceeded
 ${ }^{2}$ For maximum 1 hour
 ${ }^{3}$ Including current through protection device
 ${ }^{4}$ For maximum 1000 ms
 ${ }^{5}$ Through protection device
 ${ }^{6}$ For 1000 hours.
 ${ }^{7}$ Human Model according AEC-Q100-002 standard
 ${ }^{8}$ Machine Model according AEC-Q100-003 standard
 ${ }^{9}$ Charged Device Model according AEC-Q100-011 standard

[^1]: ${ }^{1}$ Typical values are defined at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
 ${ }^{2}$ Guaranteed by design and verified by characterization, not production tested
 ${ }^{3}$ The Power-On Time represents the time from reaching $V_{D D}=V_{\text {POR }}$ to the first refresh of the supply current state.
 ${ }^{4}$ Power-On Slew Rate is not critical for the proper device start-up.
 ${ }^{5} \mathrm{~B}>\mathrm{B}_{\text {opmax }}+1 \mathrm{mT}$ for direct output sensors, or $\mathrm{B}<\mathrm{B}_{\text {RPmin }}-1 \mathrm{mT}$.
 ${ }^{6}$ Delay Time is the time from magnetic threshold reached to the start of the supply current switching.
 ${ }^{7}$ Output jitter is the unpredictable deviation of the Delay time
 ${ }^{8}$ Maximum switching frequency corresponds to the maximum frequency of the applied magnetic field which is detected without loss of pulses
 ${ }^{9} T_{\text {PROT }}$ and $T_{\text {REL }}$ are the corresponding junction temperature values.

