: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1. Features and Benefits

- Programmable parameters in the application
- Wide magnetic Latch range: $\pm 0.4 \mathrm{mT}$ to $\pm 80 \mathrm{mT}$
- Wide magnetic Switch range: $\pm 1.5 \mathrm{mT}$ to $\pm 66 \mathrm{mT}$
- Programmable Hysteresis: 1 mT to 36mT
- Programmable field: North or South
- Programmable Output polarity: Direct or Inverted
- Built-in Negative TC coefficient: 0 to 2000 ppm/degC
- Increased Traceability: 32 bits ID on chip
- Wide operating voltage rang : from 2.7 V to 24V
- Reverse Supply Voltage Protection
- Output Current Limit with Auto-Shutoff
- Under-Voltage Lockout Protection
- Thermal Protection

2. Application Examples

- Automotive, Consumer and Industrial
- Solid-state switch
- 3-phase BLDC motor commutation
- Wiper motor
- Window lifter
- Sunroof/Tailgate opener
- Seat motor adjuster
- Electrical power steering
- Brake Light switch

3. Ordering Information

Part No.	Temperature Code	Package Code	Comment
MLX92232LSE-AAA-000-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch / Latch, $\mathrm{TC}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-000-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO-92)	3-wire Switch / Latch, $\mathrm{TC}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-001-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch / Latch, $\mathrm{TC}=-400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-001-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO-92)	3-wire Switch / Latch, $\mathrm{TC}=-400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-002-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch / Latch, $\mathrm{TC}=-1100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-002-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO-92)	3-wire Switch / Latch, $\mathrm{TC}=-1100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-003-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch / Latch, $\mathrm{TC}=-2000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-003-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO-92)	3-wire Switch / Latch, TC $=-2000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

4. Functional Diagram

5. General description

The Melexis MLX92232 is the second generation programmable Hall-effect sensor designed in mixed signal CMOS technology. The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and an open-drain output driver, all in a single package.

With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7 V while being reverse voltage tolerant. In the event of a drop below the minimum supply voltage during operation, the undervoltage lock-out protection will automatically freeze the device, preventing the electrical perturbation to affect the magnetic measurement circuitry.

The open drain output is fully protected against short-circuit with a built-in current limit. An additional automatic output shut-off is activated in case of a prolonged short-circuit condition. A self-check is then periodically performed to switch back to normal operation if the short-circuit condition is released.

The on-chip thermal protection also switches off the output if the junction temperature increases above an abnormally high threshold. It will automatically recover once the temperature decreases below a safe value.

Furthermore the MLX92232 features a full set of programmable parameters that can be adjusted in the application in order to achieve the highest possible system accuracy by compensating the mechanical tolerances.

Contents

1. Features and Benefits 1
2. Application Examples 1
3. Ordering Information 1
4. Functional Diagram 2
5. General description 2
6. Absolute Maximum Ratings 4
7. General Electrical Specifications 6
8. Magnetic Specifications 8
9. Programming parameters 9
10. Magnetic Behaviour 9
10.1. Definitions: 9
10.2. Latch sensor 9
10.3. Unipolar Switch Sensor 10
11. Application Information 11
11.1. Typical Three-Wire Application Circuit 11
11.2. Harsh, Noisy Environments Three-Wire Circuit 11
12. Standard information regarding manufacturability of Melexis products with different soldering processes 12
13. ESD Precautions 12
14. Package Information 13
14.1. UA (TO92 - 3L) Error! Bookmark not defined.
15. Contact 15
16. Disclaimer 15

6. Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply Voltage ${ }^{1,2}$	V ${ }_{\text {D }}$	+27V	V
Supply Voltage (Load Dump) ${ }^{1,4}$	V ${ }_{\text {D }}$	+32V	V
Supply Current ${ }^{1,2,3}$	$I_{\text {D }}$	+20	mA
Supply Current ${ }^{1,4,3}$	$I_{\text {D }}$	+50	mA
Reverse Supply Voltage ${ }^{1,2}$	V DDREV	-24	V
Reverse Supply Current ${ }^{1,2,5}$	$I_{\text {DDREV }}$	-20	mA
Reverse Supply Current ${ }^{1,4,5}$	$I_{\text {DDREV }}$	-50	mA
Output Voltage ${ }^{1,2}$	$V_{\text {оUt }}$	+27	V
Output Current ${ }^{1,2,5}$	$I_{\text {OUT }}$	+20	mA
Output Current ${ }^{1,4,6}$	$I_{\text {OUT }}$	+75	mA
Reverse Output Voltage ${ }^{1}$	V outrev	-0.5	V
Reverse Output Current ${ }^{1,2}$	$I_{\text {oUTREV }}$	-50	mA
Maximum Junction Temperature ${ }^{7}$	T_{J}	+165	TC
ESD Sensitivity - HBM ${ }^{8}$	-	4500	V
ESD Sensitivity - MM ${ }^{9}$	-	500	V

[^0]| ESD Sensitivity - CDM ${ }^{10}$ | - | 1000 | V |
| :--- | :---: | :---: | :---: |
| Magnetic Flux Density | B | Unlimited | mT |

Table 1 - Absolute maximum ratings
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximumrated conditions for extended periods may affect device reliability.

[^1]
7. General Electrical Specifications

DC Operating Parameters $V_{D D}=2.7$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{11}$	Max	Units
Supply Voltage	VDD	Operating	2.7	-	24	V
Supply Current	IDD		1.9	3.0	3.9	mA
Reverse supply current	Idorev	$V_{D D}=-16 \mathrm{~V}$	-1	-	-	mA
Output Saturation Voltage	Voı	$V_{D D}=3.5$ to 24 V , lout $=20 \mathrm{~mA}$	-	0.25	0.5	V
Output Leakage	loff	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=12 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Output Rise Time ${ }^{12,15}$ (Rpu dependent)	t_{R}	$\begin{aligned} & R_{P U}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.1	0.3	1	$\mu \mathrm{s}$
Output Fall Time ${ }^{12,15}$ (On-chip controlled)	t_{F}	$\begin{aligned} & R_{P U}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.1	0.3	1	$\mu \mathrm{s}$
Power-On Time ${ }^{13,14}$	ton	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{dV} \mathrm{VD}_{\mathrm{DD}} / \mathrm{dt}>2 \mathrm{~V} / \mathrm{us}$, activated output with $>1 \mathrm{mT}$ overdrive	-	40	70	$\mu \mathrm{s}$
Power-On Output State	-	t < ton	High (VPU)			-
Output Current Limit	Icı	$\mathrm{V}_{\text {DD }}=3.5$ to 24 V , $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	25	40	70	mA
Output ON Time under Current Limit conditions ${ }^{15,16}$	tclon	$V_{\text {PU }}=12 \mathrm{~V}, \mathrm{R}_{\text {Pu }}=100 \Omega$	180	240	-	$\mu \mathrm{s}$
Output OFF Time under Current Limit conditions ${ }^{15,16}$	tcloff	$\mathrm{V}_{\mathrm{PU}}=12 \mathrm{~V}, \mathrm{R}_{\text {PU }}=100 \Omega$	-	3.5	-	ms
Chopping Frequency	$\mathrm{fchop}^{\text {¢ }}$			350	-	kHz
Refresh Period	$t_{\text {Per }}$		-	6	-	$\mu \mathrm{s}$
Delay Time ${ }^{12,17}$	to	Average over 1000 successive	-	7.5	-	$\mu \mathrm{s}$

[^2]| Parameter | Symbol | Test Conditions | Min | Typ ${ }^{11}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | switching events @10kHz, Latch, Bop set to 5mT, square wave magnetic field with $\mathrm{B}> \pm 20 \mathrm{mT}, \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }} \leq 20 \mu \mathrm{~s}$ | | | | |
| Output Jitter (p-p) ${ }^{12,18}$ | tıITter | Over 1000 successive switching events @ 1kHz, Latch, Bop set to 5 mT , square wave magnetic field with $B>$ $\pm 20 \mathrm{mT}$, $\mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALI }} \leq 20 \mu \mathrm{~s}$ | - | ± 4 | - | $\mu \mathrm{s}$ |
| Maximum Switching Frequency ${ }^{12,19}$ | fsw | Latch, Bop set to 5 mT , square wave magnetic field with $B>$ $\pm 20 \mathrm{mT}$ | 30 | 50 | - | kHz |
| Under-voltage Lockout Threshold | Vuvi | | - | - | 2.7 | V |
| Under-voltage Lockout Reaction time ${ }^{12}$ | tuvi | | - | 1 | - | $\mu \mathrm{s}$ |
| Thermal Protection Threshold | $\mathrm{T}_{\text {prot }}$ | Junction temperature | - | 190 | - | ${ }^{\circ} \mathrm{C}$ |
| Thermal Protection Release | Trel | Junction temperature | - | 180 | - | ${ }^{\circ} \mathrm{C}$ |

Table 2 - General Electrical Specifications

[^3]
8. Magnetic Specifications

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{1}$	Max	Units
Latch Threshold Programming Range 6)	Вьтн	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.4		± 80	mT
Switch Operating Point Programming Range ${ }^{(3,6)}$	Bop	$V_{\text {DD }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1.5		± 66	mT
Proportional Hysteresis Ratio Programming Range HYS $_{\text {ratio }}{ }^{(4, \text {, }}$)	HYSratio	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.10		0.55	
Fixed Hysteresis Value $0{ }^{\text {(5) }}$	BFHYSO			0		mT
Fixed Hysteresis Value $1^{(5,8)}$	Bfrys1			1		mT
Fixed Hysteresis Value $2{ }^{\text {(5) }}$	BfHYs2			1.2		mT
Fixed Hysteresis Value $3^{\text {(5) }}$	BfHYs3			1.4		mT
Fixed Hysteresis Value $4{ }^{\text {(5) }}$	BfhYs4			1.8		mT
Fixed Hysteresis Value $5{ }^{(5)}$	BfHYs5			2.2		
Latch sensor Magnetic Offset (Bop + BRP)/2	Boffset	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5		+0.5	mT
	$\text { Boffset }^{(8)}$	$T_{A}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-0.9		+0.9	mT
Temperature Coefficient ${ }^{(9)}$	TC	Flat		0		ppm/oC
		SmCo,		-400		
		NdFeB,		-1100		
		Hard Ferrite,		-2000		
Factory Programmed Bop, Switch	Bop	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, programming target 28 mT	26	28	30	mT
Factory Programmed Brp, Switch	Brp	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, programming target 28 mT , $\mathrm{HYS}_{\text {RATIO }}=0.75$	19	21	23	mT

Table 3: Magnetic specifications

The hysteresis is programmable for each Bop point with a fixed value or proportional (ratiometric) to B_{OP} :

1) Ratiometric hysteresis example: $\mathrm{B}_{\mathrm{OP}}=10 \mathrm{mT} \rightarrow 4.5 \mathrm{mT} \leq \mathrm{B}_{\mathrm{RP}} \leq 9 \mathrm{mT} 2$)

Fixed hysteresis example: $\mathrm{B}_{\mathrm{OP}}=10 \mathrm{mT} \rightarrow 7.8 \mathrm{mT} \leq \mathrm{B}_{\mathrm{RP}} \leq 9 \mathrm{mT}$

[^4]
9. Programming parameters

Parameter	Symbol	Comments	Value	Units
Bop programming resolution	BорFINE	Fine programming of thresholds Bop (Switch) and Bடтн (Latch)	7	Bit
Bop sub-range	Boprange	Selection of the appropriate Switch sensor sub-range	2	Bit
Bடтн sub-range	BорRAnGE	Selection of the appropriate Latch sensor sub-range	3	Bit
Programmable Hysteresis	Bнrst	Hysteresis can be fixed or proportional (ratiometric)	4	Bit
Active Pole Selection	Bpole	Part can be programmed for South (default) or North magnetic pole active	1	Bit
Output Polarity Selection	Polout	Selects Direct or Inverted sensor Output Polarity	1	Bit
Switch/Latch Function Selection		Selects Latch (default) or Switch sensor function	1	Bit
Melexis programmed ID	ID	A unique fixed ID is implemented for device traceability, no overwriting allowed	32	Bit

Table 4: Programmable Parameters

10. Magnetic Behaviour

10.1. Definitions:

Operation Point Bop - magnetic threshold for activation of the device output, turning in ON (low) state.
Release Point $B_{R P}$ - magnetic threshold for release of the device output, turning in OFF (high) state.
Hysteresis BHYS - magnetic hysteresis, $\mathrm{B}_{\mathrm{HYS}}=\mathrm{B}_{\mathrm{OP}}-\mathrm{B}_{\text {RP }}$
United Latch Threshold $\mathrm{B}_{\mathrm{LTH}}$ - used for Latch sensor programming:
$B_{L T H}=\left(B_{O P}-B_{R P}\right) / 2=B_{H Y S} / 2$, targeting symmetrical placement of both Latch sensor thresholds vs. zero $B_{R P} \approx-B_{O P}$
Proportional Hysteresis to Operation Point Ratio - used for Switch sensor with proportional hysteresis:
HYSRatio $=$ Bhys $/$ Bop

10.2. Latch sensor

Parameter	Pole Active	Remark
Option 1	South	Fig.1
Option 3	North	Fig.2

Note: Latch sensors are inherently Direct South or Direct North Pole Active only.

Fig. 1 -South Pole Active

Fig. 2 -North Pole Active

10.3. Unipolar Switch Sensor

Parameter	Pole Active	Magnetic Polarity	Remark
Option 1	South	Direct	Fig.1
Option 2	South	Inverted	Fig.2
Option 3	North	Direct	Fig.3
Option 4	North	Inverted	Fig.4

Table 5: Unipolar switch sensor

Fig. 1 - Direct South Pole Active

Fig. 3 - Direct North Pole Active

Fig. 2 - Inverted South Pole Active

Fig. 4 - Inverted North Pole Active

11. Application Information

11.1. Typical Three-Wire Application Circuit

Notes:

1. For proper operation, a 10 nF to 22 nF bypass capacitor should be placed as close as possible to the VDD and ground pin.
2. The pull-up resistor RPU value should be chosen in to limit the current through the output pin below the maximum allowed continuous current for the device.
3. A capacitor connected to the output is not needed, because the output slope is generated internally.

11.2. Harsh, Noisy Environments Three-Wire Circuit

Notes:

1. For proper operation, a $10 n F$ to $22 n F$ bypass capacitor should be placed as close as possible to the $V_{D D}$ and ground pin.
2. The device could tolerate negative voltage down to -27 V , so if negative transients over supply line $\mathrm{V}_{\text {PEAK }}<-32 \mathrm{~V}$ are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient.
When selecting the resistor R1, three points are important:

- the resistor has to limit $I_{D D} / I_{\text {DDREV }}$ to 50 mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions ($\mathrm{V}_{\mathrm{R} 1}{ }^{2} / \mathrm{R} 1$)
- the resulting device supply voltage V_{DD} has to be higher than $\mathrm{V}_{\mathrm{DD}} \min \left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{C C}-\mathrm{R1}. \mathrm{I}_{\mathrm{DD}}\right)$

3. The device could tolerate positive supply voltage up to +27 V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with VPEAK $>32 \mathrm{~V}$ are expected, usage a zener diode Z 1 is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.
4. Limit C1 to max. 22nF and C2 to 2.2 nF in case end of line programming is requested.

12. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (SUurface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis recommends reviewing on our web site the General Guidelines soldering recommendation
(http://www.melexis.com/Quality soldering.aspx) as well as trim\&form recommendations
(http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx).
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

13. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

14. Package Information SE

14.1. (TSOT-3L) Package Information

Table 3: SE Package pinout

14.2. UA (TO92-3L) Package Information

Hall plate location

Notes:

1. All dimensions are in millimeters

UA Pin №	Name	Type	Function
1	VDD	Supply	Supply
2	GND	Ground	Ground pin
3	OUT	Output	Open Drain

Table 4: UA Package pinout

15. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +3213670495
	Email : sales_europe@melexis.com
Americas	Telephone: +16032232362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

16. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, noninfringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.
The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.
The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.
This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis.
The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.
The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-andconditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.
Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified

[^0]: ${ }^{1}$ The maximum junction temperature should not be exceeded
 ${ }^{2}$ For maximum 1 hour
 ${ }^{3}$ Including current through protection device
 ${ }^{4}$ For maximum 500 ms
 ${ }^{5}$ Through protection device
 ${ }^{6}$ For $V_{\text {Out }} \leq 27 \mathrm{~V}$.
 ${ }^{7}$ For 1000 hours.
 ${ }^{8}$ Human Model according AEC-Q100-002 standard
 ${ }^{9}$ Machine Model according AEC-Q100-003 standard

[^1]: ${ }^{10}$ Charged Device Model according AEC-Q100-011 standard

[^2]: ${ }^{11}$ Typical values are defined at $T A=+25^{\circ} \mathrm{C}$ and VDD $=12 \mathrm{~V}$
 ${ }^{12}$ Guaranteed by design and verified by characterization, not production tested
 ${ }^{13}$ The Power-On Time represents the time from reaching $V_{D D}=2.7 \mathrm{~V}$ to the first refresh of the output
 ${ }^{14}$ Power-On Slew Rate is not critical for the proper device start-up.
 ${ }^{15} R_{P U}$ and $V_{P U}$ are respectively the external pull-up resistor and pull-up power supply
 ${ }^{16}$ If the Output is in Current Limitation longer than $t_{\text {clos }}$ the Output is switched off in high-impedance state. The Output returns back in active state at next reaching of $B_{\text {OP }}$ or after $t_{\text {CLOFF }}$ time interval REVISION 2 - DECEMBER 20, 2016

[^3]: ${ }^{17}$ The Delay Time is the time from magnetic threshold reached to the start of the output switching
 ${ }^{18}$ Output jitter is the unpredictable deviation of the Delay Time
 ${ }^{19}$ Maximum switching frequency corresponds to the maximum frequency of the applied magnetic field which is detected without loss of pulses

[^4]: 1. The typical values are defined at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
 2. For Latch sensor $B_{L T H}=\left(B_{O P}-B_{R P}\right) / 2$. The Latch programming step is typically between 0.7% and 1.5% of the programmed $B_{L T H}$ value for $\left|B_{L T H}\right|$ $\geq 1.2 \mathrm{mT}$ and 0.018 mT for $\left|\mathrm{B}_{\mathrm{LTH}}\right| \leq 1.2 \mathrm{mT}$
 3. For Switch sensor the $B_{O P}$ programming step is typically between 0.7% and 1.5% of the programmed $B_{O p}$ value for $\left|B_{O P}\right| \geq 4.8 \mathrm{mT}$ and 0.072 mT for $\left|B_{\mathrm{Op}}\right| \leq$ 4.8mT
 4. For Switch sensor with proportional hysteresis HYSRATIO $=$ BHYS / BOP. The HYSRATIO programming step is 0.05
 5. For Switch sensor with fixed hysteresis value
 6. Guaranteed by design and verified by characterization. The programming ranges for BLTH and Bop include some margin for process deviations
 7. The given $\mathrm{min} / \mathrm{max}$ limits are typical values
 8. Guaranteed by design and verified by characterization
 9. The Temperature Coefficient is calculated using following formula:

 $$
 T C=\frac{B_{150}-B_{-40}}{190^{*} B_{25}} * 10^{6}, \mathrm{ppm} /{ }^{\circ} \mathrm{C}
 $$

