: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1 Features and Benefits

W Wide operating voltage range: from 3.3 V to 18 V

- Flexible magnetic thresholds and temperature coefficient
[Integrated self-diagnostic functions activating dedicated Safe Mode
\square Reverse supply voltage protection
\square Under-Voltage Reset protection
- Thermal protection
- Optional IMC integration for lateral sensing
\square Developed according to ISO26262-10, 9 as safety HW element out of context with ASIL-B level

2 Application Examples

- Automotive, Consumer and Industrial
- Brake light wake-up switch

E Electronic Steering Column Lock
\square Door latch system

- Seat positioning
- Sunroof/Tailgate opener
\square Transmission applications
- Electrical power steering

3 Ordering Information

Product Code	Temperature Code	Package Code	Option Code	Packing Form Code
MLX92292	L	SE	AAA-001	RE
MLX92291	L	SE	AAA-200	RE

Legend:

Temperature Code:
Package Code:
Option Code:
Packing Form:
Ordering example:

```
L (-40'C to }15\mp@subsup{0}{}{\circ}\textrm{C}
SE = TSOT-23L
000 => 3 wire hall effect Switch
200 => IMC version
BU=Bulk | RE = Reel | CA = Ammopack
MLX92292LSE-AAA-001-RE
```


4 Functional Diagram

5 General Description

Melexis has made a major advance in magnetic sensing technology that will have widespread implications for modern automobile design the MLX92292 - effectively represents a whole new way of sensing. This device delivers switch functions, but unlike existing products on the market it can determine the presence of magnetic fields that are lateral, not just orthogonal, to it. The uniqueness of this offering is taken further by the fact that the MLX92292 switch is supporting an ASIL B safety integrity level (in accordance with ISO 26262), with an array of built-in diagnostic mechanisms available.

Flexibility is a key attribute of the MLX92292. OEM customers can chose straightforward pre-programmed units, or alternatively they can benefit from the end-of-line (EoL) programming capacity. Through this each device may be configured (via its output pin) during the OEM production process, so system optimization is fully realized. The programming facility also enables setting of both magnetic operating points to small increments across a range spanning -90 mT to $+90 \mathrm{mT}(-40 \mathrm{mT}$ to +40 mT for lateral sensing versions).

The MLX92292 can be specified with standard orthogonal sensitivity or the lateral sensitivity option. The upshot of lateral sensitivity being that there is potential to replace multiple devices with a single surface mount unit, thereby saving valuable board space and lowering bill-of-materials costs. This stems directly from Melexis' proprietary Integrated Magnetic Concentrator (IMC ${ }^{\text {TM }}$) technology, which enables substantial heightening of signal-to-noise ratios in magnetic field measurement. In addition, the capacity of this technology to sense laterally allows lower profile system implementations, as the magnet can move alongside the device rather than having to be above it.

Safeguarding the MLX92292 are reverse supply voltage, thermal, electro-static discharge (ESD) and overvoltage protections, plus Under-Voltage Reset features. With the capacity to deal with a 40V load dump, it can be connected directly to the vehicle battery. In order to achieve ASIL B compliance, numerous diagnostic/monitoring functions have been incorporated, including Hall sensor and analog frontend diagnostics. The device comprises a full set of programmable reporting features, giving it compatibility with any existing electronic control unit (ECU) interface. Only the normal application pins are required for this without need of additional diagnostic pins and thus simplifying the design concept considerably.

Table of Contents

1 Features and Benefits 1
2 Application Examples 1
3 Ordering Information 1
4 Functional Diagram 2
5 General Description 3
6 Absolute Maximum Ratings 5
7 General Electrical Specifications 6
8 Version specific parameters 8
8.1 MLX92292LSE-AAA-001-RE 8
8.2 MLX92291LSE-AAA-200-RE 8
9 Magnetic Behaviour 10
9.1 Latch Sensor 10
9.2 Unipolar Switch Sensor 11
10 Functional Safety Capability 12
10.1 Sensor Development 12
10.2 Technical Safety Requirements 12
10.2.1 TS RQT Mission 12
10.2.2 TS_RQT_Safe_Message 12
11 Application Information 13
11.1 Typical Automotive Application Circuit 13
11.2 Automotive and Harsh, Noisy Environments Application Circuit 13
12 Package Information 14
12.1 UA (TO92-3L) Package Information 14
12.2 SE (TSOT-3L) Package Information 15
13 Standard information regarding manufacturability of Melexis products with different soldering processes 16
14 ESD Precautions 16
15 Contact 17
16 Disclaimer 17

6 Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply voltage ${ }^{(1,2)}$	Vdo	+28V	V
Supply voltage (Load Dump) ${ }^{(1,4)}$	$V_{D D}$	$+45 \mathrm{~V}$	V
Supply current ${ }^{1}{ }^{1,2,3)}$	ldo	+20	mA
Supply current ${ }^{1}$, , $\left.{ }^{3}, 4\right)$	ldo	+50	mA
Reverse supply voltage ${ }^{(1,2)}$	VdDREV	-24	V
Reverse supply voltage $\left.{ }^{1}, 4\right)$	Vddrev	-30	V
Reverse supply current ${ }^{1}$, $\left.{ }^{2}, 5\right)$	ldorev	-20	mA
Reverse supply current ${ }^{1,4,5}$)	Idorev	-40	mA
Output voltage ${ }^{(1,2)}$	Vout	+28	V
Output current $(1,2,5)$	lout	+20	mA
Reverse output voltage ${ }^{(1)}$	Voutrev	-0.5	V
Reverse output current $\left({ }^{1},{ }^{2}\right)$	loutrev	-50	mA
Maximum junction temperature ${ }^{(6)}$	TJ	+165	${ }^{\circ} \mathrm{C}$
ESD sensitivity - HBM ${ }^{(7)}$	-	8	kV
ESD sensitivity - CDM ${ }^{(8)}$	-	1000	V

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[^0]
7 General Electrical Specifications

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
Under-Voltage Reset threshold	Vuve	$V_{D D}$ monitoring during Active phase	1.8	2.5	3	V
UVR reaction time ${ }^{(2)}$	tuvr	$V_{D D}$ monitoring during Active phase, $V_{D D}=V_{U V R}-0.3 \mathrm{~V}$	-	1	-	$\mu \mathrm{s}$
Minimum supply voltage for defined output state ${ }^{(2)}$	VDD1	$\mathrm{R}_{\mathrm{PU}}=2.2 \mathrm{k} \Omega, \mathrm{V}_{\text {PU }}=5 \mathrm{~V}$	-	1	1.2	V
Output leakage ${ }^{(8)}$	loff	Vout $=18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 . .85^{\circ} \mathrm{C}$	-	0.1	1	$\mu \mathrm{A}$
Output leakage	loff	$V_{\text {Out }}=18 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
Output saturation voltage	Vol	Fast Mode, lol $=20 \mathrm{~mA}$	0.1	0.25	0.7	V
Output saturation voltage	Vol	μ-Power Mode, lol $=10 \mathrm{~mA}$	-	0.15	0.5	V
Output Rise Time ${ }^{(2,5)}$ (Rpu dependent)	t_{R}	$\begin{aligned} & R_{\text {PU }}=2.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\text {PU }}=5 \mathrm{~V} \\ & \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.3	0.6	1	$\mu \mathrm{s}$
Output Fall Time ${ }^{(2,5)}$ (On-chip controlled)	t_{F}	$\begin{aligned} & R_{P U}=2.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.3	0.6	1	$\mu \mathrm{s}$
Power-On time ${ }^{(3,4)}$	ton	$V_{D D}=5 \mathrm{~V}, \mathrm{dV}$ Do/dt $>2 \mathrm{~V} / \mathrm{us}$	-	0.5	1	ms
Power-On state	-	Output state during ton	High			-
Output update period	Tupd	Fast Mode	-	40	45	$\mu \mathrm{s}$
Programmable operating (output update) period	Top	μ-Power Mode, typical range	$0.16{ }^{(1)}$	-	$260{ }^{(1)}$	ms
Operating period 1 (1st ref. value)	Top1	μ-Power Mode	196	222	246	ms
Operating period 2 (2nd ref. value)	Top2	μ-Power Mode	40	45	50	ms
Programmable diagnostic period in Fail Safe state	TDP	Fast Mode, typical range	$0.13{ }^{(1)}$	-	$260{ }^{(1)}$	ms
Programmable "Output Ticking" repetition period	TTICK	Equal to (multiple of) Top, typical range	$0.6{ }^{(1)}$	-	260(1)	ms
Programmable "Output Ticking" duration	tтick	Typical range	4	-	128	$\mu \mathrm{s}$
Active phase duration, diagnostic On	tact_Don	μ-Power Mode, defined at lod $>0.7 \mathrm{~mA}$	-	40	-	$\mu \mathrm{s}$
Active phase duration, diagnostic Off	tact_Doff	μ-Power Mode, defined at $\mathrm{ldD}>0.7 \mathrm{~mA}$	-	24	-	$\mu \mathrm{s}$
Tolerance of operating period ratio $t_{\text {Act }} /$ Top	Rtol	μ-Power Mode	-5	0	5	\%
Active phase supply current, diagnostic On (average value)	lddact_don	μ-Power Mode	1.8	2.4	2.9	mA
Active phase supply current, diagnostic Off (average value)	lddact_Doff	μ-Power Mode	2.2	3	3.5	mA
Standby phase supply current(${ }^{(8)}$	Iddstby	$V_{D D} \leq 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 . .85^{\circ} \mathrm{C}$	-	6	9	$\mu \mathrm{A}$
Standby phase supply current	IdDStBy	$V_{D D} \leq 16 \mathrm{~V}$	-	6	27	$\mu \mathrm{A}$
Average supply current ${ }^{(8,9)}$	Iddavg1	$V_{\text {DD }} \leq 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40.85^{\circ} \mathrm{C}, \mathrm{TOP}=\mathrm{TOP}_{\text {P }}$	-	6.4	9.5	$\mu \mathrm{A}$
Average supply current(8,9)	Iddavg2	$\mathrm{V}_{\text {DD }} \leq 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40.85^{\circ} \mathrm{C}, \mathrm{T}_{\text {OP }}=\mathrm{T}_{\text {OP2 }}$	-	8.1	11.7	$\mu \mathrm{A}$
Step response time ${ }^{(2)}$	tresp	Fast Mode, $\mathrm{B}_{\mathrm{op}}=1 \mathrm{mT}, \mathrm{B}_{R P}=-1 \mathrm{mT}$, square wave magnetic field with B $> \pm 4 \mathrm{mT}$, $\mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }} \leq 5 \mu \mathrm{~s}$	15	40	65	$\mu \mathrm{s}$
Signal bandwidth ${ }^{(2,6)}$	BW	Fast Mode, $B_{o p}=1 \mathrm{mT}, B_{R P}=-1 \mathrm{mT}$, sine wave magnetic field with amplitude 5 mT	6	8	-	kHz
Peak supply current ${ }^{(2)}$	Iddpeak	For peak duration $\geq 5 \mu \mathrm{~s}$	-	2.9	3.6	mA
Fast Mode supply current	lddFASt		2.2	2.9	3.5	mA
Fast Mode fail supply current	IddFall		0.1	0.3	0.6	mA

3-wire μ Power programmed ASIL B capable Hall Effect Switch
inspired engineering Datasheet

Reverse supply current	IDDREV	VDD $=-16 \mathrm{~V}$	-1	-	-	mA
Thermal Protection Activation	TPROT		-	$185\left({ }^{(7)}\right.$	-	${ }^{\circ} \mathrm{C}$
Thermal Protection Release	TREL		-	$175^{(7)}$	-	${ }^{\circ} \mathrm{C}$
UA package thermal resistance	RTHJA	Single layer PCB, JEDEC standard test boards, still air (LFPM=0)	-	200	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SE package thermal resistance	RTHJA	Single layer PCB, JEDEC standard test boards, still air (LFPM=0)	-	300	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1 Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12 \mathrm{~V}$
2 Guaranteed by design and verified by characterization, not production tested
3 The Power-On Time represents the time from reaching $V_{D D}=3.3 \mathrm{~V}$ to the first refresh of the output state.
4 Power-On Slew Rate is not critical for the proper device start-up.
$5 R_{P U}$ and $V_{P U}$ are respectively the external pull-up resistor and pull-up power supply
6 OUT switching should track magnetic field frequency without missing pulses
$7 T_{\text {PROT }}$ and $T_{\text {REL }}$ are the corresponding junction temperature values
8 Guaranteed by correlation with production test at $T_{A}=150^{\circ} \mathrm{C}$ and verified by characterization
9 Average current consumption for μ-Power Mode
$\mathrm{I}_{\mathrm{ddaVG}}=\frac{\mathrm{I}_{\mathrm{ddact}} * \mathrm{t}_{\mathrm{Act}} *\left(1+\mathrm{R}_{\mathrm{tol}} / 100\right)+\mathrm{I}_{\mathrm{ddStby}} *\left(\mathrm{~T}_{\mathrm{op}}-\mathrm{t}_{\mathrm{Act}} *\left(1+\mathrm{R}_{\mathrm{ToL}} / 100\right)\right)}{\mathrm{T}_{\mathrm{ob}}}$,
where $t_{A C T}$ and $T_{O P}$ are always typical values. The maximum $I_{D D A C T}, I_{D D S T B Y}$ and $R_{T O L}$ spec values should be used for the maximum $I_{D D A V G}$ calculation.

3-wire μ Power programmed ASIL B capable Hall Effect Switch
NSPIRED ENGINEERING Datasheet

8 Version specific parameters

8.1 MLX92292LSE-AAA-001-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

| Test Condition | Operating Point
 $B_{0 p}(\mathrm{mT})$ | | Release Point
 $B_{\text {RP }}(\mathrm{mT})$ | | TC
 $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ | Output
 behaviour | Active Pole |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, μs	"Output Ticking" repetition period, ms
No	uNoDiag	0.16	-	-	-

8.2 MLX92291LSE-AAA-200-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

| Test Condition | Operating Point
 $\mathrm{B}_{\mathrm{op}}(\mathrm{mT})$ | | | Release Point
 $\mathrm{B}_{\mathrm{RP}}(\mathrm{mT})$ | | TC
 $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ | Output
 behaviour | Active Pole |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
Yes	FlddMsg	-	2	-	-

1 Melexis production testing is limited to version specific parameters only
2 Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12 \mathrm{~V}$
3 The Temperature Coefficient is calculated using following formula:

$$
T C=\frac{\mathrm{B}_{\mathrm{XPTA} 2}-\mathrm{B}_{\mathrm{XPTA} 1}}{\mathrm{~B}_{\mathrm{XPTA} 1} *\left(\mathrm{~T}_{\mathrm{A} 2}-\mathrm{T}_{\mathrm{A} 1}\right)} * 10^{6}, \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

where:
$T_{A 1}=25^{\circ} \mathrm{C}, T_{A 2}=150^{\circ} \mathrm{C}$,
In case of magnetic Latch application: $B_{X P T A 1}\left(B_{X P T A 2}\right)=B_{O P-B_{R P}}$ at $T_{A 1}\left(T_{A 2}\right)$
In case of magnetic Switch application: $B_{X P T A 1}\left(B_{X P T A 2}\right)=B_{O P}$ or $B_{R P}$ at $T_{A 1}\left(T_{A 2}\right)$

North active pole (IMC version)

South active pole (IMC version)

North active pole

North active pole

South active pole

South active pole

9 Magnetic Behaviour

9.1 Latch Sensor

Fig. 1 - Direct Output Latch

Fig. 2 - Inverted Output Latch

9.2 Unipolar Switch Sensor

Magnetic Field	Output Polarity	Remark
South	Direct South Switch	Fig.3
South	Inverted South Switch	Fig.4
North	Direct North Switch	Fig.5
North	Inverted North Switch	Fig.6

Fig. 3 - Direct South Switch

Fig. 5 - Direct North Switch

Fig. 4 - Inverted South Switch

Fig.6-Inverted North Switch

3-wire μ Power programmed ASIL B capable Hall Effect Switch
INSPIRED ENGINEERING
Datasheet

10 Functional Safety Capability

10.1 Sensor Development

MLX92292 is developed according to the ISO26262 requirements for ASIL B level.

10.2 Technical Safety Requirements

The main (mission) technical safety requirement for MLX92292 is the following:

10.2.1 TS_RQT_Mission

MLX92292 shall detect the presence of magnetic field by comparing it with magnetic thresholds Bop and Brp, each of them being within a Safe Tolerance Interval (STI) defined in mT as $\pm \mathrm{a}$ * $\mathrm{Bxp} \pm \mathrm{b}$, where
Bxp is the actual magnetic threshold (B op or Brp) and a, b are parameters depending on the application temperature range.
Two typical examples of Safe Tolerance Interval are given in section 5 and 6.

10.2.2 TS_RQT_Safe_Message

MLX92292 shall report detected failures that could prevent TS_RQT_Mission.
One of the following programmable Safe Message options can be chosen depending on the application:

Message Option	$\mathrm{B}<\mathrm{Brp}$ Diagnostic OK	B>Bop Diagnostic OK	All B values Diagnostic Failed	Diagnostic Coverage	Safe States
μ-Power Mode				SPFM	
TickMsg ${ }^{(1,2)}$	OUT = Off+Ticking	OUT = On+Ticking	OUT = Off	92\%	Bop, BRP within STI; OUT = On/Off w/o ticking
TickOffMsg ${ }^{(1)}$	OUT = Off+Ticking	OUT = On	OUT $=0 \mathrm{Of}$	82\%	Bop, B_{RP} within STI ; OUT = Off
TickOnMsg ${ }^{(2)}$	OUT = Off	OUT = On+Ticking	OUT $=0 n$	55\%	Bop, BRp within STI ; OUT = On
OutOffMsg	OUT $=$ Off	OUT $=0 n$	OUT = Off	82\%	Bop, BRP within STI ; OUT = Off
OutOnMsg	OUT = Off	OUT $=0 \mathrm{n}$	OUT $=0 \mathrm{n}$	55\%	Bop, Brp within STI ; OUT = On
StbyX2Msg ${ }^{(3)}$	OUT = Off	OUT $=0 \mathrm{n}$	$\begin{aligned} & \text { OUT = Off } \\ & \text { Twice increased Top } \end{aligned}$	77\%	Bop, BRP within STI; Twice increased Top
uNoDiag(4)	OUT = Off	OUT $=$ On	-	No diagnostic	Bop, BRP within STI
Fast Mode					
FlddMsg	$\begin{aligned} & \text { OUT = Off, } \\ & \text { IDD = IDDFAST } \end{aligned}$	$\begin{aligned} & \text { OUT = On, } \\ & I_{D D}=I_{D D F A S T} \end{aligned}$	$\begin{aligned} & \text { OUT = Off, } \\ & I_{\text {DD }}=I_{D D F A I L} \end{aligned}$	67\%	Bop, BRP within STI ; OUT=Off \& Iod below (1..1.6)mA
FNoDiag(4)	OUT = Off	OUT = On	-	No diagnostic	Bop, B_{RP} within STI

Note (1) Off+Ticking signal means that the Off state duration lasts significantly longer than the On state duration.
Note (2) On+Ticking signal means that the On state duration lasts significantly longer than the Off state duration.
Note (3) If $T_{O P}$ is set <5ms then $T_{O P}$ increases less than twice in case of diagnostic fail.
Note (4) This message option do not offer integrated diagnostic

11 Application Information

11.1 Typical Automotive Application Circuit

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
2. A capacitor connected to the output will improve the EMC performance

11.2 Automotive and Harsh, Noisy Environments Application Circuit

Notes:

1. For proper operation the bypass capacitor C 1 should be placed as close as possible to the VDD and GND pins.
2. If negative transients over supply line $V_{\text {PEAK }}<-30 \mathrm{~V}$ are expected, usage of the diode $D 1$ is recommended. Otherwise only $R 1$ is sufficient. When selecting the resistor R1, three points are important:

- the resistor has to limit $I_{D D} / I_{\text {DDREV }}$ to 40 mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions ($\mathrm{V}_{\mathrm{R} 1}{ }^{2} / \mathrm{R} 1$)
- the resulting device supply voltage $V_{D D}$ has to be higher than $V_{D D} \min \left(V_{D D}=V_{C C}-R 1 . I_{D D}\right)$

3. If positive transients over supply line with $V_{\text {PEAK }}>40 \mathrm{~V}$ are expected, usage of Zener diode $\mathrm{Z1}$ is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.

12 Package Information

12.1 UA (TO92-3L) Package Information

Notes:

1. All dimensions are in millimeters
2. Package dimension exclusive molding flash.
3. The end flash shall not exceed 0.127 mm on the top side.

Marking:
$1^{\text {st }}$ Line : 92WW
92: referring to design number
WW: Calender week number
$2^{\text {nd }}$ Line $: ~ Y L L L$
Y - last digit of year LLL - Last three digits of lot number

Hall plate location

Notes:

1. All dimensions are in millimeters

UA Pin No	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	OUT	I/O	Output\&Test I/O

Table 1: UA Package pinout

12.2 SE (TSOT-3L) Package Information

END VIEW

SECTION B-B'

Notes:

1. All dimensions are in millimeters
2. Outermost plastic extreme width does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.15 mm per side.
3. Outermost plastic extreme length does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.25 mm per side.
4. The lead width dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.07 mm total in excess of the lead width dimension at maximum material condition.
5. Dimension is the length of terminal for soldering to a substrate.
6. Dimension on SECTION B-B' applies to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip.
7. Formed lead shall be planar with respect to one another with 0.076 mm at seating plane.

Marking:
TOP:
92WW - Normal sensitivity version
93WW - Lateral sensitivity version
WW: Assembly week
BOTTOM:
YLLL
Y: Assembly Year
LLL: Last 3 digits from lot\#

TOP VIEW

Hall plate location
Notes:

1. All dimensions are in millimeters

SE Pin No	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	I/O	Output\&Test I/O
3	GND	Ground	Ground pin

[^1]

13 Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices
Solderability SMD's (Sㄴurface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

14 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

Datasheet

15 Contact

For the latest version of this document, go to our website at www.melexis.com.
For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +3213670495
	Email : sales_europe@melexis.com
Americas	Telephone: +16032232362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

16 Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, noninfringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.
The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current.
Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.
The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.
This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis.
The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.
The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-andconditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.
Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)
ISO/TS 16949 and ISO14001 Certified

[^0]: ${ }^{1}$ The maximum junction temperature should not be exceeded
 ${ }^{2}$ For maximum 1 hour
 ${ }^{3}$ Including current through protection device
 ${ }^{4}$ For maximum 500ms
 ${ }^{5}$ Through protection device
 ${ }^{6}$ For 1000 hours.
 ${ }^{7}$ Human Body Model according AEC-Q100-002 standard
 ${ }^{8}$ Charged Device Model according AEC-Q100-011 standard

[^1]: Table 2: SE Package pinout

