imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised May 2002 MM74C00 • MM74C02 • MM74C04 Quad 2-Input NAND Gate • Quad 2-Input NOR Gate • Hex Inverter

MM74C00 • MM74C02 • MM74C04 Quad 2-Input NAND Gate • Quad 2-Input NOR Gate • Hex Inverter

General Description

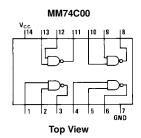
FAIRCHILD

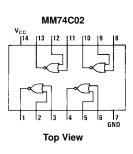
SEMICONDUCTOR

The MM74C00, MM74C02, and MM74C04 logic gates employ complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity and symmetric controlled rise and fall times. With features such as this the 74C logic family is close to ideal for use in digital systems. Function and pin out compatibility with series 74 devices minimizes design time for those designers already familiar with the standard 74 logic family.

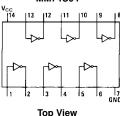
All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Features


- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power consumption: 10 nW/package (typ.)
- Low power: TTL compatibility: Fan out of 2 driving 74L


Ordering Code:

Order Number	Package Number	Package Description
MM74C00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C02N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagrams

www.fairchildsemi.com

© 2002 Fairchild Semiconductor Corporation DS005877

Absolute Maximum Ratings(Note 1)

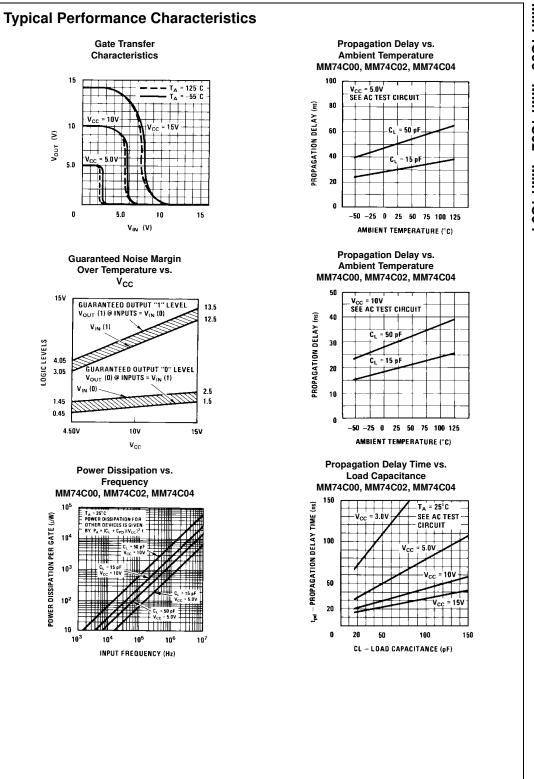
Voltage at Any Pin	–0.3V to V _{CC} + 0.3V
Operating Temperature Range	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Operating V _{CC} Range	3.0V to 15V
Maximum V _{CC} Voltage	18V
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature	
(Soldering, 10 seconds)	300°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" hey are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

ns pF pF

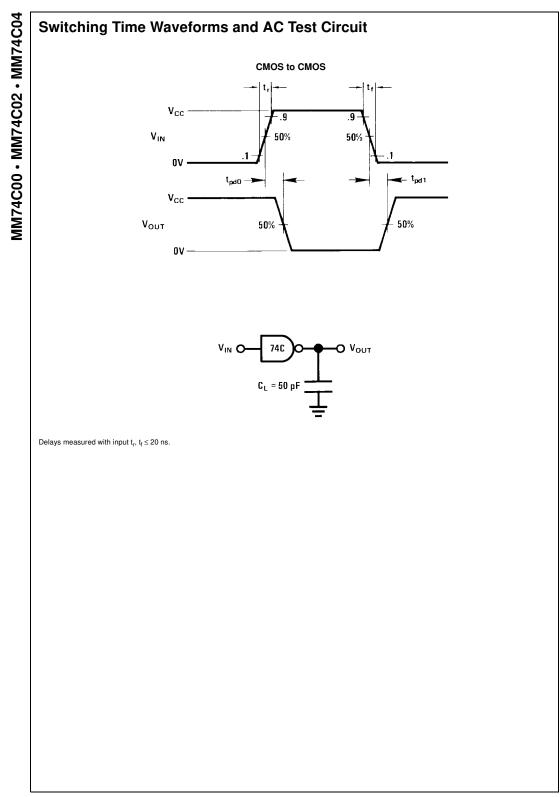
DC Electrical Characteristics

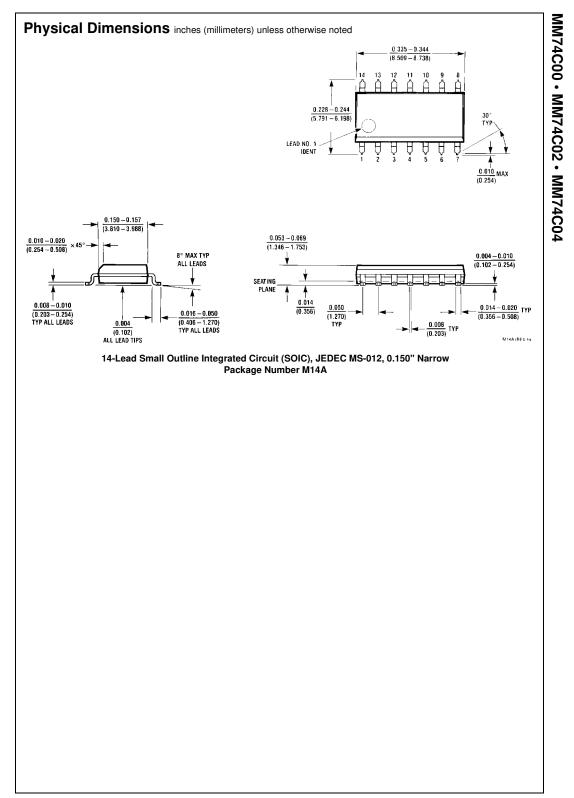
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO CN	los		·			
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0 V$	3.5			v
		$V_{CC} = 10V$	8.0			
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V
		$V_{CC} = 10V$			2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \ \mu A$	4.5			v
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 10 \ \mu A$			0.5	v
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	
IN(1)	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
IN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
cc	Supply Current	$V_{CC} = 15V$		0.01	15	μA
LOW POWER	TO CMOS					
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = -10 \ \mu A$	4.4			V
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = 10 \ \mu A$			0.4	V
CMOS TO LO	WPOWER		1			
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	4.0		1	V
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			1.0	V
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	74C, V_{CC} = 4.75V, I_O = 360 μ A			0.4	V
	VE (see Family Characteristics Data	Sheet) TA = 25°C (short circuit current)	1			
SOURCE	Output Source Current	$V_{CC} = 5.0V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-1.75			mA
SOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-8.0			mA
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{IN(1)} = 5.0V, V_{OUT} = V_{CC}$	1.75			mA
SINK	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V, V_{OUT} = V_{CC}$	8.0			mA
	ctrical Characterist	()				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
MM74C00, MN	174C02, MM74C04	I	1			
nd0, t _{nd1}	Propagation Delay Time to	$V_{CC} = 5.0 V$		50	90	

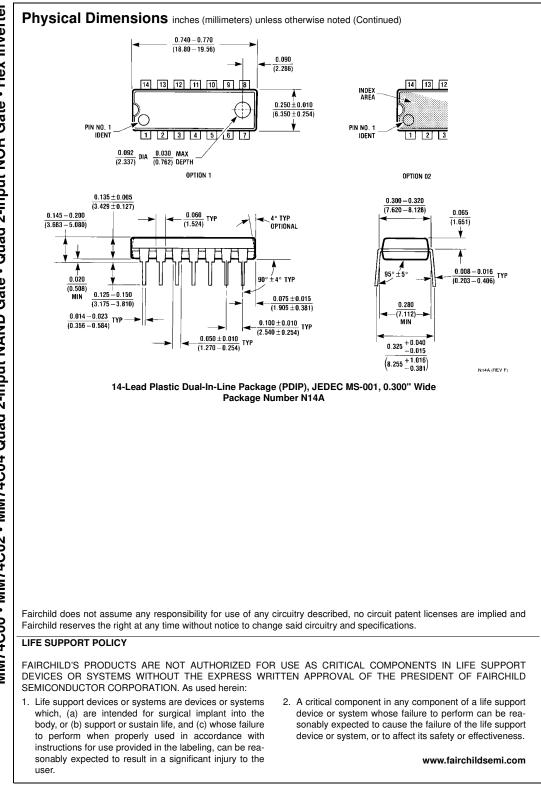

^t pd0, ^t pd1	Propagation Delay Time to	$V_{CC} = 5.0V$	50	90	
	Logical "1" or "0"	V _{CC} = 10V	30	60	
C _{IN}	Input Capacitance	(Note 3)	6.0		
C _{PD}	Power Dissipation Capacitance	Per Gate or Inverter (Note 4)	12		
Note 2: AC Par	ameters are guaranteed by DC correlated test	ling.			

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device.


For complete explanation see Family Characteristics Application Note-AN-90.


www.fairchildsemi.com


MM74C00 • MM74C02 • MM74C04

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

6