imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MM74C14 Hex Schmitt Trigger

FAIRCHILD

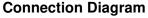
SEMICONDUCTOR

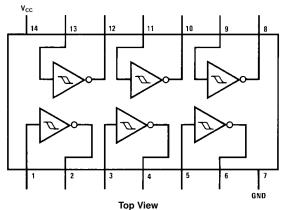
MM74C14 Hex Schmitt Trigger

General Description

The MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The positive and negative going threshold voltages V_{T+} and V_{T-} , show low variation with respect to temperature (typ. 0.0005V/°C at V_{CC} = 10V), and hysteresis, $V_{T+}-V_{T-} \geq$ 0.2 V_{CC} is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to $\rm V_{CC}$ and GND.


Features


■ Wide supply voltage range: 3.0V to 15V

- High noise immunity: 0.70 V_{CC} (typ.)
- Low power: TTL compatibility:
- 0.4 V_{CC} (typ.) 0.2 V_{CC} guaranteed
- Hysteresis: 0.4 V_{CC} (typ.): 0.2 V_{CC} guaranteed

Ordering Code:

Order Number	Package Number	Package Description			
MM74C14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM74C14N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.					

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin Operating Temperature Range	-0.3Vto V_{CC} + 0.3V -55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500mW
Operating V _{CC} Range	3.0V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature	
(Soldering, 10 seconds)	260°C

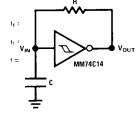
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

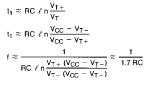
DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	MOS		•	· · · · ·		•
V _{T+} P	Positive Going Threshold Voltage	$V_{CC} = 5V$	3.0	3.6	4.3	
		$V_{CC} = 10V$	6.0	6.8	8.6	v
		$V_{CC} = 15V$	9.0	10.0	12.9	1
V _{T-}	Negative Going Threshold Voltage	$V_{CC} = 5V$	0.7	1.4	2.0	
		$V_{CC} = 10V$	1.4	3.2	4.0	V
		$V_{CC} = 15V$	2.1	5.0	6.0	1
$V_{T+} - V_{T-}$	Hysteresis	$V_{CC} = 5V$	1.0	2.2	3.6	
		$V_{CC} = 10V$	2.0	3.6	7.2	V
		$V_{CC} = 15V$	3.0	5.0	10.8	1
OUT(1)	Logical "1" Output Voltage	$V_{CC} = 5V, I_O = -10 \ \mu A$	4.5			v
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			Ť
/ _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_O = 10 \ \mu A$			0.5	v
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	Ť
IN(1)	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
IN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
сс	Supply Current	$V_{CC} = 15V, V_{IN} = 0V/15V$		0.05	15	
		V _{CC} = 5V, V _{IN} = 2.5V (Note 2)		20		μΑ
		$V_{CC} = 10V, V_{IN} = 5V$ (Note 2)		200		μΛ
		V _{CC} = 15V, V _{IN} = 7.5V (Note 2)		600		1
CMOS/LPT1	LINTERFACE					
/ _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	4.3			V
/ _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			0.7	V
/ _{OUT(1)}	Logical "1" Output Voltage	74C, V_{CC} = 4.75V, I_O = -360 μ A	2.4			V
OUT(0)	Logical "0" Output Voltage	74C, V_{CC} = 4.75V, I_O = 360 μ A			0.4	V
DUTPUT DF	RIVE (see Family Characteristics Data	Sheet) T _A = 25°C (Short Circuit Current)			
SOURCE	Output Source Current	$V_{CC} = 5V, V_{OUT} = 0V$	-1.75	-3.3		mA
COUNCE	(P-Channel)					
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-8.0	-15		mA
	(P-Channel)					
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{OUT} = V_{CC}$	1.75	3.6		mA
	(N-Channel)					
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC}$	8.0	16		mA
	(N-Channel)					
Note 2: Only	one of the six inputs is at 1/2 V _{CC} ; the others	are either at V _{CC} or GND.				

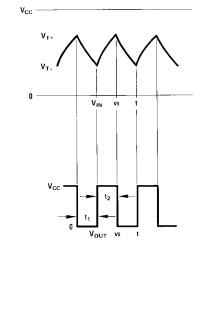
AC Electrical Characteristics (Note 3)

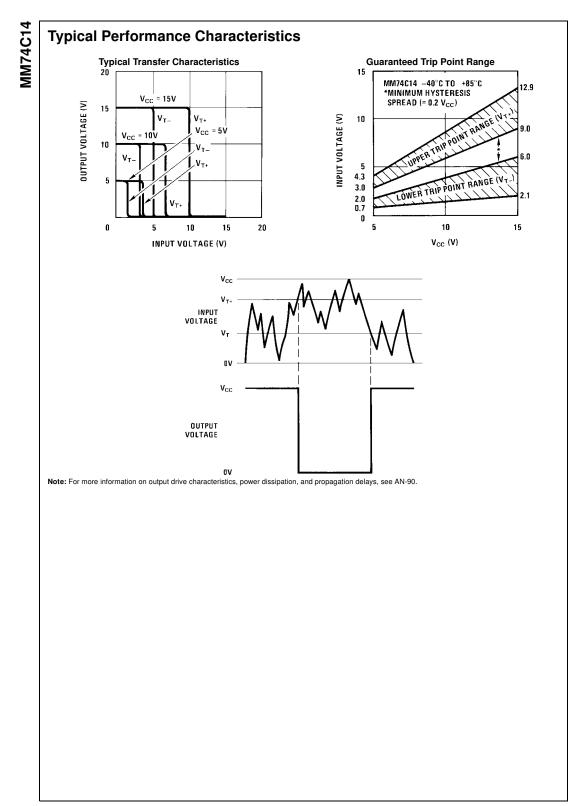
$T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise specified							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{PD0}	Propagation Delay	$V_{CC} = 5V$		220	400	n	
t _{PD1}	from Input to Output	$V_{CC} = 10V$		80	200	ns	
C _{IN}	Input Capacitance	Any Input (Note 4)		5.0		pF	
C _{PD}	Power Dissipation Capacitance	Per Gate (Note 5)		20		pF	

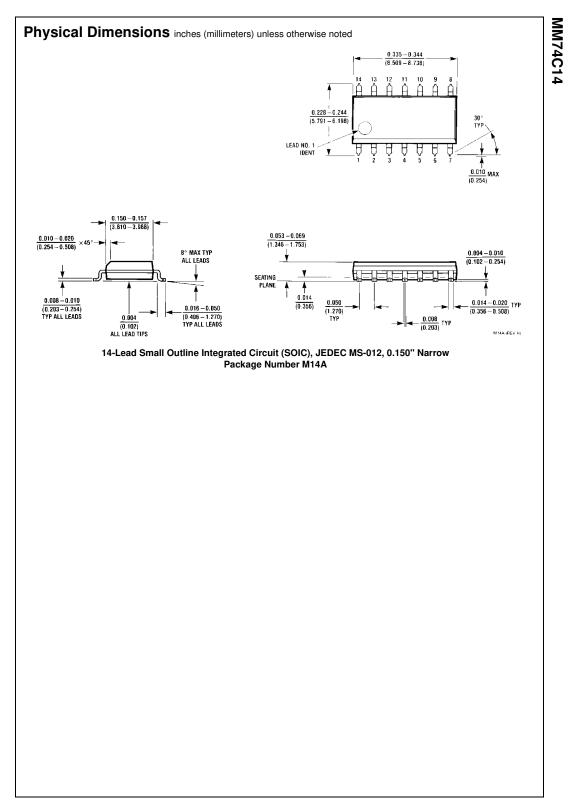

Note 3: AC Parameters are guaranteed by DC correlated testing.

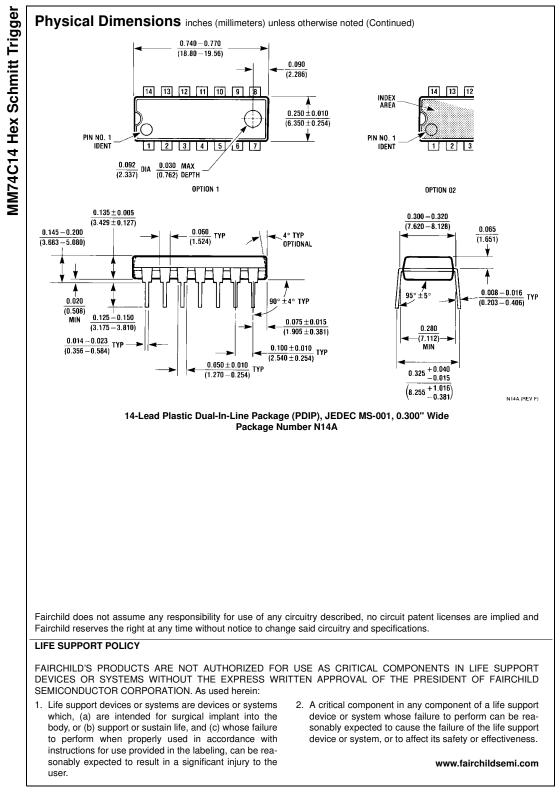

Note 4: Capacitance is guaranteed by periodic testing.

Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note—AN-90.


Typical Applications




Note: The equations assume $t_1 + t_2 \gg t_{pd0} + t_{pd1}$



www.fairchildsemi.com

MM74C14

www.fairchildsemi.com