

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised January 2004

MM74C164

8-Bit Parallel-Out Serial Shift Register

General Description

The MM74C164 shift registers are a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. These 8-bit shift registers have gated serial inputs and clear. Each register bit is a D-type master/slave flip-flop. A high-level input enables the other input which will then determine the state of the flip-flop.

Data is serially shifted in and out of the 8-bit register during the positive going transition of clock pulse. Clear is independent of the clock and accomplished by a low level at the clear input. All inputs are protected against electrostatic effects.

Features

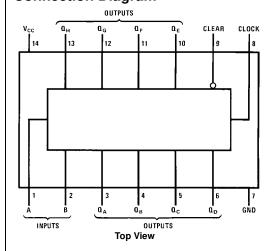
■ Supply voltage range: 3V to 15V

■ Tenth power TTL compatible: drive 2 LPTTL loads

■ High noise immunity: 0.45 V_{CC} (typ.)

■ Low power: 50 nW (typ.)

■ Medium speed operation: 0.8 MHz (typ.) with 10V


Applications

- · Data terminals
- Instrumentation
- · Medical electronics
- · Alarm systems
- · Industrial electronics
- · Remote metering
- · Computers

Ordering Code:

Order Number	Package Number	Package Description			
MM74C164M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM74C164N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Connection Diagram

Truth Table

Serial Inputs A and B

Innute

inp	Output		
t	t _{n+1}		
Α	В	Q_A	
1	1	1	
0	1	0	
1	0	0	
0	0	0	

Block Diagram

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Voltage at Any Pin} & -0.3\mbox{V to V}_{\rm CC} + 0.3\mbox{V} \\ \mbox{Operating Temperature Range} & -55\mbox{°C to +125}\mbox{°C} \\ \mbox{Storage Temperature Range} & -65\mbox{°C to +150}\mbox{°C} \\ \mbox{Absolute Maximum V}_{\rm CC} & 18\mbox{V}_{\rm CC} \end{array}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Operating V_{CC} Range 3V to 15V

Lead Temperature

(soldering, 10 seconds) 260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides

conditions for actual device operation.

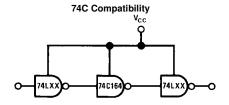
DC Electrical Characteristics

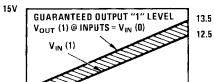
Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоѕ		'			•
$V_{IN(1)}$	Logical "1" Input Voltage	V _{CC} = 5V	3.5			V
		$V_{CC} = 10V$	8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V		1		V
		$V_{CC} = 10V$			2.0	, v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC}=10V,\ I_O=-10\ \mu A$	9.0			
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = +10 \mu A$			0.5	V
		$V_{CC}=10V,\ I_O=+10\ \mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V$, $V_{IN} = 0V$	-1.0	-0.005		μΑ
I _{CC}	Supply Current	V _{CC} = 15V		0.05	300	μΑ
CMOS TO	LPTTL INTERFACE	•				•
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_O = 360 \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				•
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	-1.75			mA
		$T_A = 25^{\circ}C$, $V_{OUT} = 0V$				
I _{SOURCE}	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8.0			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	1.75			mA
		$T_A = 25$ °C, $V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	8.0			mA
		$T_A = 25$ °C, $V_{OUT} = V_{CC}$				

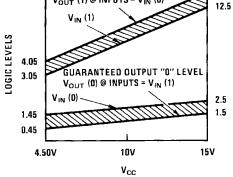
AC Electrical Characteristics (Note 2)

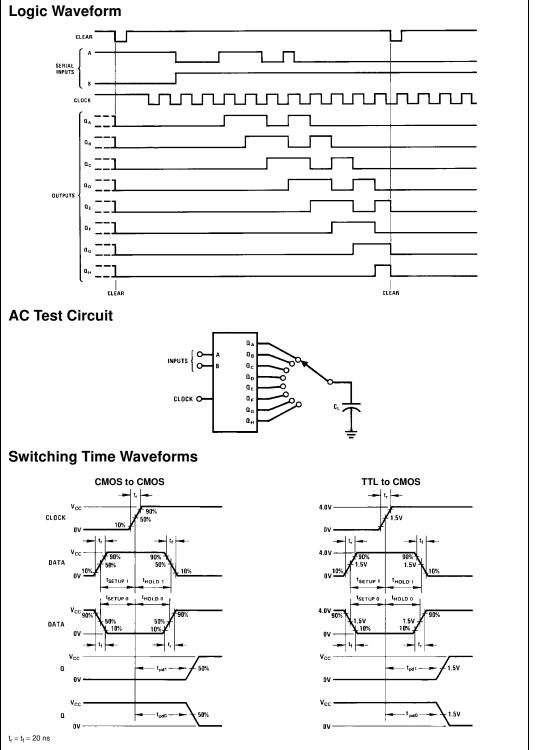
 $T_A=25^{\circ}C,\ C_L=50$ pF, unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd1}	Propagation Delay Time to a Logical "0" or a	$V_{CC} = 5V$		230	310		
	Logical "1" from Clock to Q	V _{CC} = 10V		90	120	ns	
t _{pd0}	Propagation Delay Time to a Logical "0" from	$V_{CC} = 5V$		280	380		
	Clear to Q	$V_{CC} = 10V$		110	150	ns	
t _S	Time Prior to Clock Pulse that Data	$V_{CC} = 5V$	200	110			
	Must be Present	V _{CC} = 10V	80	30		ns	
t _H	Time After Clock Pulse that	$V_{CC} = 5V$	0	0		no	
	Data Must be Held	V _{CC} = 10V	0	0		ns	
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.0	3		NALL-	
		V _{CC} = 10V	5.5	8		MHz	
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$		150	250	ns	
		V _{CC} = 10V		55	90		
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5V$	15				
		$V_{CC} = 10V$	5			μs	
C _{IN}	Input Capacitance	Any Input (Note 3)		5		pF	
C _{PD}	Power Dissipation Capacitance	(Note 4)		140		pF	


Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note


Typical Applications

Guaranteed Noise Margin as a Function of $V_{\mbox{\scriptsize CC}}$

Physical Dimensions inches (millimeters) unless otherwise noted $\frac{0.335 - 0.344}{(8.509 - 8.738)}$ LEAD NO. 1 IDENT 0.010 MAX (0.254) $\frac{0.150 - 0.157}{(3.810 - 3.988)}$ $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ $\frac{0.010 - 0.020}{(0.254 - 0.508)}$ 8° MAX TYP ALL LEADS $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ SEATING PLANE 0.014 0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS 0.050 (1.270) TYP $\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$ 0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.004 (0.102) ALL LEAD TIPS 0.008 (0.203) TYP

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

M14A (REV h)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770(18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 0.250 ± 0.010 PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\overline{(7.620 - 8.128)}$ 0.065 $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 0.060 4° TYP Optional (1.524) (1.651) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ 0.280 (1.905 ± 0.381) (7.112) MIN 0.014 - 0.023 $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$ TYP (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 $0.325 + 0.040 \\ -0.015 \\ \hline (8.255 + 1.016) \\ -0.381)$

www.fairchildsemi.com

N14A (REV F)