

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised May 2002

MM74C73 • MM74C76 Dual J-K Flip-Flops with Clear and Preset

General Description

The MM74C73 and MM74C76 dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement transistors. Each flip-flop has independent J, K, clock and clear inputs and Q and Q outputs. The MM74C76 flip flops also include preset inputs and are supplied in 16 pin packages. This flip-flop is edge sensitive to the clock input and change state on the negative going transition of the clock pulse. Clear or preset is independent of the clock and is accomplished by a low level on the respective input.

Features

■ Supply voltage range: 3V to 15V

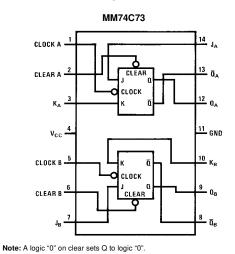
■ Tenth power TTL compatible: Drive 2 LPTTL loads

■ High noise immunity: 0.45 V_{CC} (typ.)

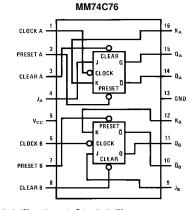
■ Low power: 50 nW (typ.)

■ Medium speed operation: 10 MHz (typ.)

Applications


- Automotive
- · Data terminals
- Instrumentation
- · Medical electronics
- Alarm systems
- · Industrial electronics
- · Remote metering
- Computers

Ordering Code:


	Order Number	Package Number	Package Description	
MM74C73N N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
	MM74C76M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow	
	MM74C76N	N16F	16-Lead Plastic Dual-In-Line Package (PDIP) JEDEC MS-001 0 300" Wide	

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

Top View

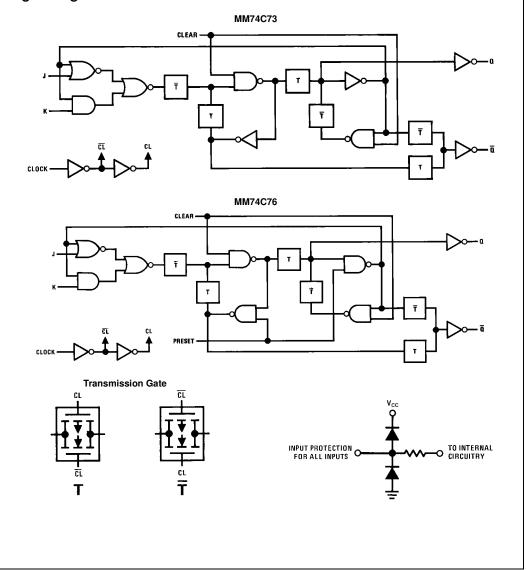
Note: A logic "0" on clear sets Q to a logic "0".

Note: A logic "0" on preset sets Q to a logic "1".

Top View

ornaration DC0

Truth Table


t	t _{n+1}	
J	K	Q
0	0	Q_n
0	1	0
1	0	1
1	1	\overline{Q}_n

Preset	Clear	Q_n	$\overline{\mathbf{Q}}_{\mathbf{n}}$
0	0	0	0
0	1	1	0
1	0	0	1
1	1	Q_n	\overline{Q}_n
		(Note 1)	(Note 1)

 t_n = bit time before clock pulse t_{n+1} = bit time after clock pulse

Note 1: No change in output from previous state

Logic Diagrams

Absolute Maximum Ratings(Note 2)

 $\begin{array}{lll} \mbox{Voltage at Any Pin} & -0.3\mbox{V to V}_{\mbox{CC}} + 0.3\mbox{V} \\ \mbox{Operating Temperature Range} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \end{array}$

Power Dissipation

Dual-In-Line 700 mW

Small Outline 500 mW

Lead Temperature

(Soldering, 10 seconds) 260°C

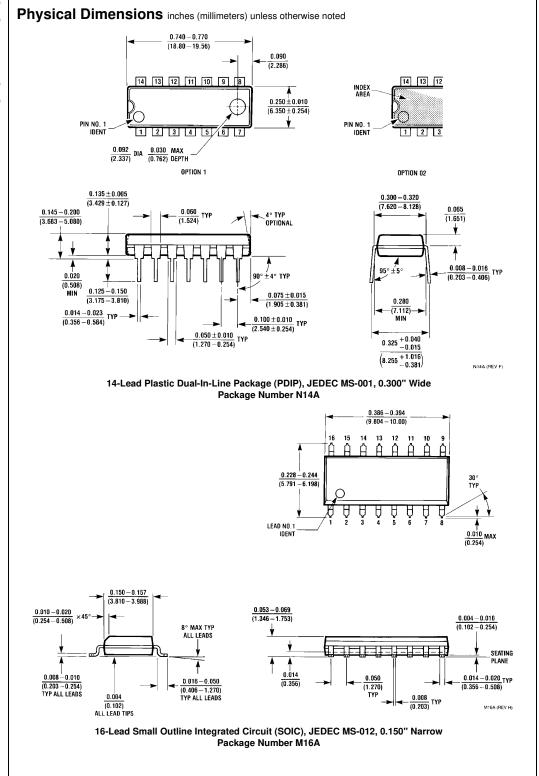
Operating V_{CC} Range +3V to 15V

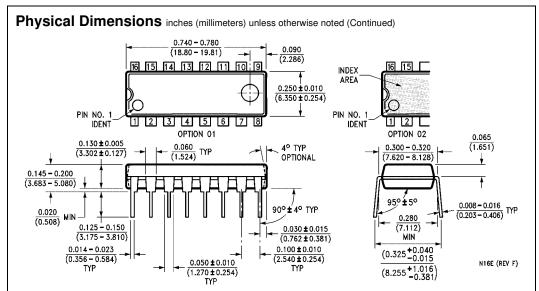
V_{CC} (Max) 18V

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоѕ	•				•
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5V	3.5			V
		V _{CC} = 10V	8			
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V			1.5	٧
		V _{CC} = 10V			2	
V _{OUT(1)}	Logical "1" Output Voltage	V _{CC} = 5V	4.5			٧
		V _{CC} = 10V	9			
V _{OUT(0)}	Logical "0" Output Voltage	V _{CC} = 5V			0.5	V
		V _{CC} = 10V			1	
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V			1	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V	-1			μΑ
I _{CC}	Supply Current	V _{CC} = 15V		0.050	60	μΑ
LOW POW	ER TTL TO CMOS INTERFACE	·				
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_O = 360 \mu A$			0.4	V
OUTPUT D	PRIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
I _{SOURCE}	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	-1.75			mA
		$T_A = 25^{\circ}C$, $V_{OUT} = 0V$	-1.75			IIIA
I _{SOURCE}	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8			mA
		$T_A = 25$ °C, $V_{OUT} = 0$ V	-0			
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	1.75			mA
		$T_A = 25$ °C, $V_{OUT} = V_{CC}$	1.75			
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	8			mA
		$T_A = 25^{\circ}C$, $V_{OUT} = V_{CC}$	0			


AC Electrical Characteristics (Note 3) $T_A = 25^{\circ}\text{C}, \ C_L = 50 \ \text{pF}, \ \text{unless otherwise noted}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
C _{IN}	Input Capacitance	Any Input		5		pF
t _{pd0} , t _{pd1}	Propagation Delay Time to a	$V_{CC} = 5V$		180	300	ns
	Logical "0" or Logical "1" from	V _{CC} = 10V		70	110	
	Clock to Q or Q					
t _{pd0}	Propagation Delay Time to a	V _{CC} = 5V		200	300	ns
	Logical "0" from Preset or Clear	V _{CC} = 10V		80	130	
t _{pd}	Propagation Delay Time to a	V _{CC} = 5V		200	300	ns
	Logical "1" from Preset or Clear	V _{CC} = 10V		80	130	
t _S	Time Prior to Clock Pulse that	V _{CC} = 5V		110	175	ns
	Data must be Present	$V_{CC} = 10V$		45	70	
t _H	Time after Clock Pulse that J	V _{CC} = 5V		-40	0	ns
	and K must be Held	V _{CC} = 10V		-20	0	
t _{PW}	Minimum Clock Pulse Width	V _{CC} = 5V		120	190	ns
	$t_{WL} = t_{WH}$	V _{CC} = 10V		50	80	
t _{PW}	Minimum Preset and Clear	V _{CC} = 5V		90	130	ns
	Pulse Width	$V_{CC} = 10V$		40	60	
t _{MAX}	Maximum Toggle Frequency	V _{CC} = 5V	2.5	4		MHz
		V _{CC} = 10V	7	11		
t _r , t _f	Clock Pulse Rise and Fall Time	V _{CC} = 5V			15	
		$V_{CC} = 10V$			5	μs

Note 3: AC Parameters are guaranteed by DC correlated testing.

AC Test Circuit Switching Time Waveforms CMOS to CMOS INPUTS t_{SETUP} Ω or $\widetilde{\Omega}$ $t_r = t_f = 20 \text{ ns}$ **Typical Applications Ripple Binary Counters** COUNTER Enable CLOCK -Shift Registers CLOCK -Guaranteed Noise Margin as a Function of $\rm V_{CC}$ 74C Compatibility GUARANTEED OUTPUT "1" LEVEL VOUT (1) @ INPUTS = VIN (0) 13.5 74CXX LOGIC LEVELS GUARANTEED OUTPUT "0" LEVEL V_{OUT} (0) @ INPUTS = V_{IN} (1) V_{IN} (0) 2.5 1.5 0.45 10V 15V 4.50V v_{cc}

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com