: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ($\left.\mathrm{P}_{\mathrm{D}}\right)$	
\quad Dual-In-Line	700 mW
\quad Small Outline	500 mW
Operating V_{CC} Range	3.0 V to 15 V
Absolute Maximum V_{CC}	16 V
Lead Temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$	
\quad (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CMOS TO CMOS						
$\mathrm{V}_{\operatorname{IN}(1)}$	Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\operatorname{IN}(0)}$	Logical "0" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \hline 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & \hline 0.5 \\ & 1.0 \end{aligned}$	
$\mathrm{I}_{\operatorname{IN}(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{N}(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
$\mathrm{I}_{\text {cc }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$

CMOS/LPTTL INTERFACE

$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}-1.5$			V
	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			0.8	V
$\mathrm{~V}_{\mathrm{OUT}(1)}$	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{OUT}(0)}$	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$			0.4	V

OUTPUT DRIVE (See Family Characteristics Data Sheet)

$I_{\text {SOURCE }}$	Output Source Current (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
$\mathrm{I}_{\text {SOURCE }}$	Output Source Current (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \% \\ & \hline \end{aligned}$	8.0	16		mA
$\mathrm{R}_{\text {SOURCE }}$	Q11-Q0 Outputs	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	150		350	Ω
$\mathrm{R}_{\text {SINK }}$	Q11-Q0 Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\text {OUT }}=0.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	80		230	Ω

AC Electrical Characteristics (Note 2)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
t_{pd}	Propagation Delay Time from Clock Input to Outputs $(\mathrm{Q} 0-\mathrm{Q} 11)\left(\mathrm{t}_{\mathrm{pd}(\mathrm{Q})}\right)$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 80 \end{gathered}$	$\begin{aligned} & 350 \\ & 150 \end{aligned}$	ns ns
t_{pd}	Propagation Delay Time from Clock Input to D0 ($\left.\mathrm{t}_{\mathrm{pd}(\mathrm{DO})}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 180 \\ 70 \end{gathered}$	$\begin{aligned} & 325 \\ & 125 \end{aligned}$	ns ns
t_{pd}	Propagation Delay Time from Register Enable (E) to Output (Q11) ($\left.\mathrm{t}_{\mathrm{pd}(\mathrm{E})}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 190 \\ 75 \end{gathered}$	$\begin{aligned} & 350 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{pd}	Propagation Delay Time from Clock to CC ($\left.\mathrm{t}_{\mathrm{pd}(\mathrm{CC})}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 190 \\ 75 \end{gathered}$	$\begin{aligned} & 350 \\ & 0.50 \end{aligned}$	ns ns
t_{s}	Data Input Set-Up Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{S}	Start Input Set-Up Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$
t_{W}	Minimum Clock Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{gathered} \hline 125 \\ 50 \end{gathered}$		ns ns
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Clock Rise and Fall Time	$\begin{aligned} & \hline V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 5.0 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 4.0 \\ 10 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {CK }}$	Clock Input Capacitance	Clock Input (Note 3)		10		pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any other Input (Note 3)		5		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	(Note 4)		100		pF

Note 2: AC Parameters are guaranteed by DC correlated testing
Note 3: Capacitance is guaranteed by periodic testing.
Note 4: $\mathrm{C}_{\text {PD }}$ determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics Application Note-AN-90.

Typical Performance Characteristics

T_{A} - AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)
-These points are guaranteed by automatic testing

T_{A} - AMBIENT TEMPERATURE(${ }^{\circ} \mathrm{C}$)
-These points are guaranteed by automatic testing.

Switching Time Waveforms

USER NOTES FOR A/D CONVERSION

The register can be used with either current switches that require a low voltage level to turn the switch ON or current switches that require a high voltage level to turn the switch ON. If current switches are used which turn ON with a low logic level, the resulting digit output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If current switches are used which turn ON with a high logic level, the resulting digit output is active high. A logic " 1 " is represented as a high voltage level.
For a maximum error of $\pm 1 / 2$ LSB, the comparator must be biased. If current switches that require a high voltage level to turn ON are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a low logic level to turn ON, then the comparator must be biased $-1 / 2 \mathrm{LSB}$.
The register can be used to perform 2's complement conversion by offsetting the comparator one half full range $+1 / 2$

LSB and using the complement of the MSB Q11 as the sign bit.
If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on powerON. This situation can be overcome by making the START input the "OR" function of CC and the appropriate register output.
The register, by suitable selection of register ladder network, can be used to perform either binary or BCD conversion.
The register outputs can drive the 10 bits or less with $50 \mathrm{k} /$ $100 \mathrm{k} / 2 \mathrm{R}$ ladder network directly for $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ or higher. In order to drive the 12-bit 50k/100k ladder network and have the $\pm 1 / 2$ LSB resolution, the MM74C902 or MM74C904 is used as buffers, three buffers for MSB (Q11), two buffers for Q10, and one buffer for Q9.

Typical Applications

Definition of Terms

CP: Register clock input.
CC: Conversion complete-this output remains at $\mathrm{V}_{\text {OUT(1) }}$ during a conversion and goes to $\mathrm{V}_{\text {OUT(0) }}$ when conversion is complete.
D: Serial data input-connected to comparator output in A-to-D applications.
$\overline{\mathrm{E}}$: Register enable -this input is used to expand the length of the register. When \bar{E} is at $\mathrm{V}_{\operatorname{IN}(1)}$ Q11 is forced to $\mathrm{V}_{\text {OUT(1) }}$ and inhibits conversion. When not used for expansion \bar{E} must be connected to $\mathrm{V}_{\operatorname{IN}(0)}$ (GND).

Q11: True register MSB output.
$\overline{\text { Qup }} 11$: Complement of register MSB output.
Qi ($\mathbf{i}=\mathbf{0}$ to 11): Register outputs.
$\overline{\mathrm{S}}$: Start input—holding start input at $\mathrm{V}_{\mathrm{IN}(0)}$ for at least one clock period will initiate a conversion by setting MSB (Q11) at $\mathrm{V}_{\text {OUT(0) }}$ and all other output (Q10-Q0) at $\mathrm{V}_{\text {OUT(1) }}$. If setup time requirements are met, a conversion may be initiated by holding start input at $\mathrm{V}_{\operatorname{IN}(0)}$ for less than one clock period.
DO: Serial data output-D input delayed by one clock period.
Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.600" Wide Package Number N24A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
