imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR TM

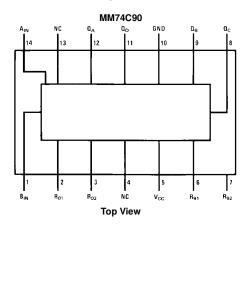
October 1987 Revised May 2002

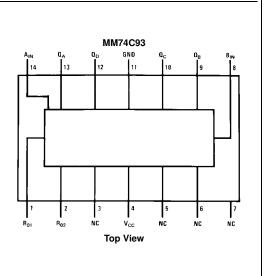
MM74C90 • MM74C93 4-Bit Decade Counter • 4-Bit Binary Counter

MM74C90 • MM74C93 4-Bit Decade Counter • 4-Bit Binary Counter

General Description

The MM74C90 decade counter and the MM74C93 binary counter and complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. The 4-bit decade counter can reset to zero or preset to nine by applying appropriate logic level on the R₀₁, R₀₂, R₉₁ and R₉₂ inputs. Also, a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, 5 or 10 frequency counter. The 4-bit binary counter can be reset to zero by applying high logic level on inputs R₀₁ and R₀₂, and a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, -8, or -16 divider. Counting occurs on the negative going edge of the input pulse. All inputs are protected against static discharge damage.

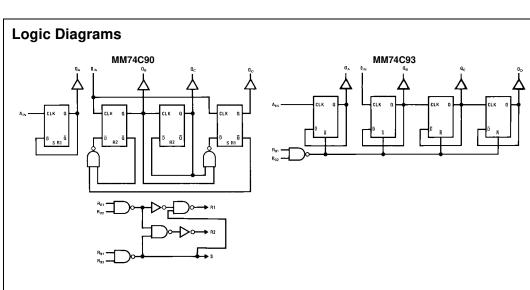

Features


- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1V
- High noise immunity: 0.45 V_{CC} (typ.)
 Low power compatibility:
- Fan out of 2 TTL driving 74L
- The MM74C93 follows the MM74L93 Pinout

Ordering Code:

Order Number	Package Number	Package Description
MM74C90N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C93N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagrams



© 2002 Fairchild Semiconductor Corporation DS005889

www.fairchildsemi.com

MM74C90 • MM74C93

Truth Tables

MM74C90 4-Bit Decade Counter BCD Count Sequence

Count	Output				
	QD	Q _C	QB	Q _A	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	н	L	
3	L	L	Н	Н	
4	L	н	L	L	
5	L	н	L	Н	
6	L	н	Н	L	
7	L	н	Н	Н	
8	н	L	L	L	
9	н	L	L	н	

Output Q_A is connected to Input B for BCD count. H = HIGH Level L = LOW Level X = Irrelevant

MM74C93 4-Bit Binary Counter Binary Count Sequence

Count	Output				
	QD	Q _C	QB	Q _A	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	н	L	
3	L	L	н	Н	
4	L	н	L	L	
5	L	н	L	Н	
6	L	н	н	L	
7	L	Н	Н	Н	
8	н	L	L	L	
9	н	L	L	Н	
10	н	L	Н	L	
11	н	L	н	Н	
12	н	н	L	L	
13	н	н	L	Н	
14	н	н	н	L	
15	н	н	н	Н	

Output Q_A is connected to input B for binary count sequence. H = HIGH Level L = LOW Level X = Irrelevant

Function Tables

Reset Inputs			Output					
R ₀₁	R ₀₂	R ₉₁	R ₉₂	QD	Q _C	QB	QA	
Н	Н	L	Х	L	L	L	L	
н	н	Х	L	L	L	L	L	
Х	Х	н	н	н	L	L	н	
Х	L	Х	L	Count				
L X L X Count								
L	х	Х	L	Count				
Х	L	L	Х		Co	unt		

	Reset Inputs		Output		
R ₀₁	R ₀₂	Q _D	Q _C	Q _B	Q _A
Н	Н	L	L	L	L
L	Х		Co	unt	
х	L		Co	unt	

MM74C90 • MM74C93

www.fairchildsemi.com

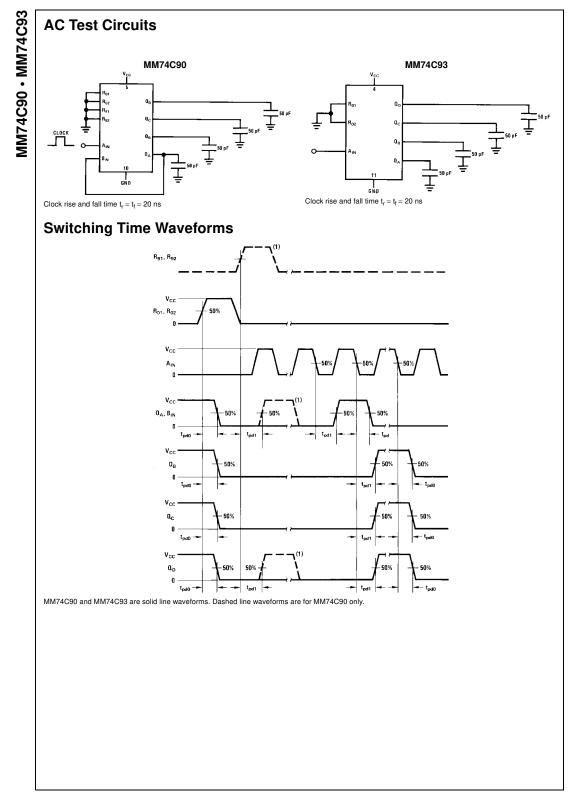
Absolute Maximum Ratings(Note 1)

Voltage at Any Pin (Note 1)	–0.3V to V _{CC} +0.3V
Operating Temperature Range (T_A)	
MM74C90, MM74C93	-55°C to +125°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Absolute Maximum V _{CC}	18V
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

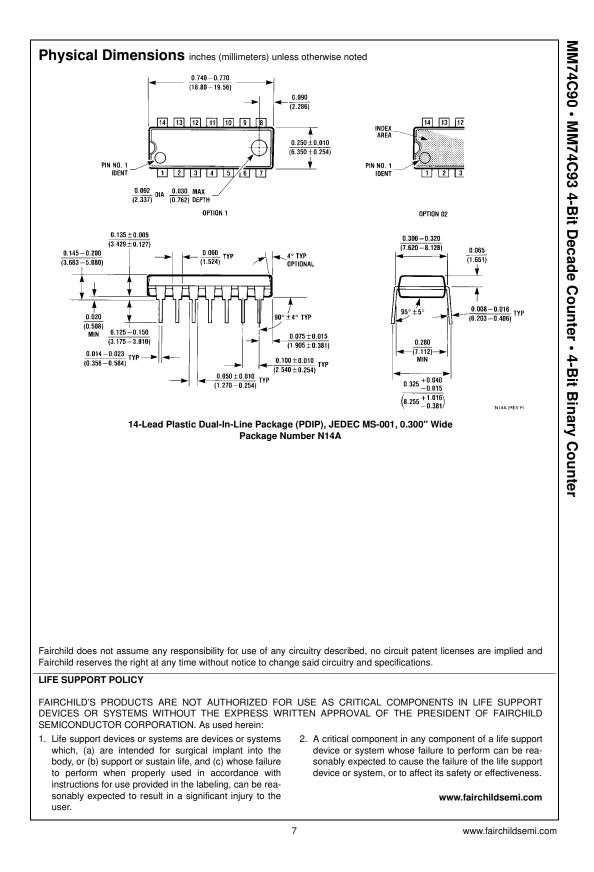
DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS	I				
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			v
		$V_{CC} = 10V$	8.0			v
/ _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	v
		$V_{CC} = 10V$			2.0	v
/ _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			v
		$V_{CC}=10V,\ I_O=-10\ \mu A$	9.0			v
OUT(0)	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_{O} = +10 \ \mu A$			0.5	v
		$V_{CC}=10V,\ I_O=+10\ \mu A$			1.0	v
IN(1)	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
IN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
сс	Supply Current	$V_{CC} = 15V$		0.05	300	μA
CMOS/LP1	TL INTERFACE					
/ _{IN(1)}	Logical "1" Input Voltage					
	MM74C90, MM74C93	$V_{CC} = 4.75V$	V _{CC} -1.5			V
/ _{IN(0)}	Logical "0" Input Voltage					
	MM74C90, MM74C93	$V_{CC} = 4.75V$			0.8	V
OUT(1)	Logical "1" Output Voltage					
	MM74C90, MM74C93	$V_{CC}=4.75V,\ I_O=-360\ \mu A$	2.4			V
OUT(0)	Logical "0" Output Voltage					
	MM74C90, MM74C93	$V_{CC} = 4.75V, \ I_O = -360 \ \mu A$			0.4	V
DUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
SOURCE	Output Source Current	$V_{CC} = 5V, V_{OUT} = 0V$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$		0.0		
SOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-8.0	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$	0.0	.0		
SINK	Output Sink Current	$V_{CC} = 5V, V_{OUT} = V_{CC}$	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C$	1.75	0.0		
SINK	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC}$	8.0	16		mA
	(N-Channel)	$T_A = 25^{\circ}C$	0.0	.0		шл


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
,		V _{CC} = 5V	MIN	200	400	Units	
t _{pd0} , t _{pd1}	Propagation Delay Time			200 80	400 150	ns	
	from A _{IN} to Q _A Propagation Delay Time from	$V_{CC} = 10$ $V_{CC} = 5V$		450	850	───	
t _{pd0} , t _{pd1}		00			300	ns	
	A _{IN} to Q _B (MM74C93)	$V_{CC} = 10V$ $V_{CC} = 5V$		160 450	800		
t _{pd0} , t _{pd1}	Propagation Delay Time from	00				ns	
	A _{IN} to Q _B (MM74C90)	$V_{CC} = 10V$		160	300	-	
t _{pd0} , t _{pd1}	Propagation Delay Time	$V_{CC} = 5V$		500	1050	ns	
	from A _{IN} to Q _C (MM74C93)	V _{CC} = 10		200	400		
t _{pd0} , t _{pd1}	Propagation Delay Time from	$V_{CC} = 5V$		500	1000	ns	
	A _{IN} to Q _C (MM74C93)	V _{CC} = 10V		200	400		
t _{pd0} , t _{pd1}	Propagation Delay Time from	$V_{CC} = 5V$		600	1200	ns	
	A _{IN} to Q _D (MM74C93)	$V_{\rm CC} = 10V$		250	500		
t _{pd0} , t _{pd1}	Propagation Delay Time from	$V_{CC} = 5V$		450	800	ns	
	A _{IN} to Q _D (MM74C90)	$V_{CC} = 10V$		160	300		
t _{pd0} , t _{pd1}	Propagation Delay Time from	$V_{CC} = 5V$		150	300	ns	
	R_{01} or R_{02} to Q_A , Q_B , Q_C or Q_D	$V_{CC} = 10V$		75	150		
	(MM74C93)						
t _{pd0} , t _{pd1}	Propagation Delay Time from	$V_{CC} = 5V$		200	400	ns	
	R_{01} or R_{02} to Q_A , Q_B , Q_C or Q_D	$V_{CC} = 10V$		75	150		
	(MM74C90)						
t _{pd0} , t _{pd1}	Propagation Delay Time from	$V_{CC} = 5V$		250	500	ns	
	R_{91} or R_{92} to Q_A or Q_D	$V_{CC} = 10V$		100	200		
	(MM74C90)						
t _{PW}	Min. R ₀₁ or R ₀₂ Pulse Width	$V_{CC} = 5V$	600	250		ns	
	(MM74C93)	$V_{CC} = 10V$	30	125			
t _{PW}	Min. R ₀₁ or R ₀₂ Pulse Width	$V_{CC} = 5V$	600	250		ns	
	(MM74C90)	$V_{CC} = 10V$	300	125		110	
t _{PW}	Min. R ₉₁ or R ₉₂ Pulse Width	$V_{CC} = 5V$	500	200		ns	
	(MM74C90)	$V_{CC} = 10V$	250	100		110	
t _r , t _f	Maximum Clock Rise	$V_{CC} = 10V$			15	μs	
	and Fall Time	$V_{CC} = 10V$			5	μ5	
tw	Minimum Clock Pulse Width	$V_{CC} = 5V$	250	100		ns	
		$V_{CC} = 10V$	100	50		115	
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2			MHz	
		$V_{CC} = 10V$	5			IVIFIZ	
C _{IN}	Input Capacitance	Any Input (Note 3)		5		pF	
CPD	Power Dissipation Capacitance	Per Package (Note 4)		45		pF	

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.


Note 4: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see Family Characteristics application note-AN-90.

5

www.fairchildsemi.com

6

