

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

September 1983 Revised February 1999

MM74HC175 Quad D-Type Flip-Flop With Clear

General Description

The MM74HC175 high speed D-type flip-flop with complementary outputs utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads.

Information at the \underline{D} inputs of the MM74HC175 is transferred to the Q and \overline{Q} outputs on the positive going edge of the clock pulse. Both true and complement outputs from each flip flop are externally available. All four flip-flops are controlled by a common clock and a common CLEAR. Clearing is accomplished by a negative pulse at the CLEAR input. All four Q outputs are cleared to a logical "0" and all four \overline{Q} outputs to a logical "1."

The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

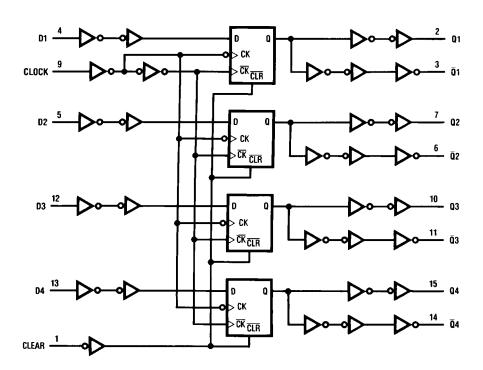
- Typical propagation delay: 15 ns
- Wide operating supply voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent supply current: 80 µA maximum (74HC)
- High output drive current: 4 mA minimum (74HC)

Ordering Code:

Order Number	Package Number	Package Description
MM74HC175M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC175MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram


Pin Assignments for DIP, SOIC, SOP and TSSOP VCC 4Q 4Q 4Q 4D 3D 3Q 3Q CLOCK 16 15 14 13 12 11 10 9 CLR CK D CK CLR Q Q Q CCLR CK D CK CLR D CK CLR CCLEAR 1Q 1Q 1D 2D 2Q 2Q GND Top View

Truth Table

ı	Outputs			
Clear	Clock	D	Q	Q
L	X	Х	L	Н
Н	1	Н	Н	L
Н	1	L	L	Н
Н	L	Х	Q_0	\overline{Q}_0

- H = HIGH Level (steady state)
- L = LOW Level (steady state)
- X = Irrelevant
- ↑ = Transition from LOW-to-HIGH level
- $\mathbf{Q}_0 = \text{The level of Q}$ before the indicated steady-state input conditions were established

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to V_{CC} $+1.5V$
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Patings are those	a values	heyond wh	ich dam-

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

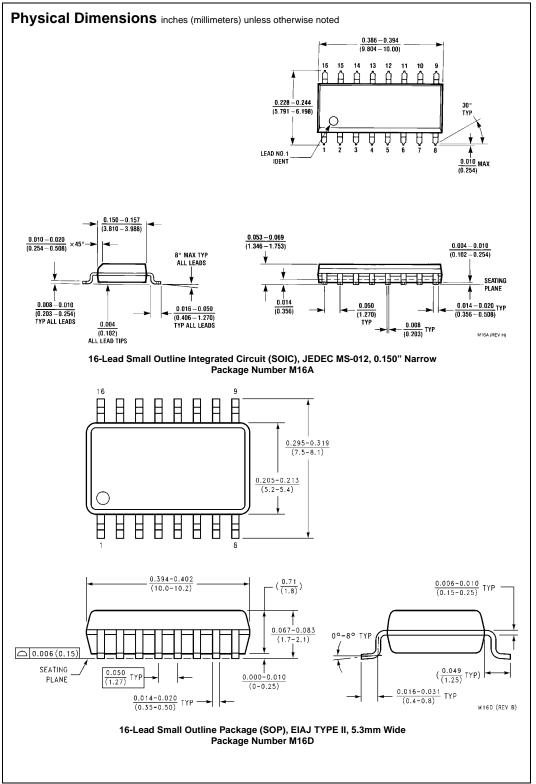
DC Electrical Characteristics (Note 4)

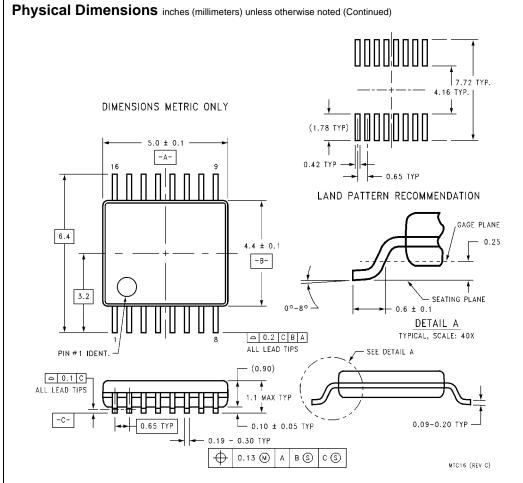
Cumbal	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$		T _A = -40 to 85°C	T _A = -55 to 125°C	Units
Symbol			v _{CC}	Тур		Guaranteed L		
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μА
	Current							
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8	80	160	μА
	Supply Current	$I_{OUT} = 0 \mu A$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

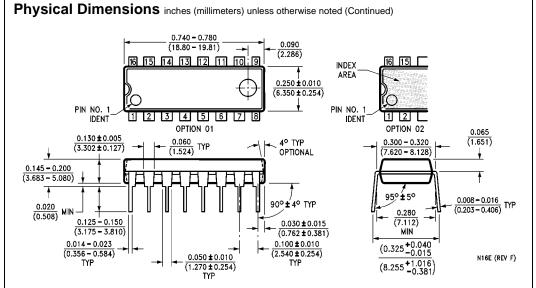
AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating		60	35	MHz
	Frequency				
t _{PHL} , t _{PLH}	Maximum Propagation		15	25	ns
THE TELL	Delay, Clock to Q or Q				
t _{PHL} , t _{PLH}	Maximum Propagation		13	21	ns
	Delay, Reset to Q or Q				
t _{REC}	Minimum Removal			20	ns
	Time, Clear to Clock				
t _S	Minimum Setup Time, Data to Clock			20	ns
t _H	Minimum Hold Time, Data from Clock			0	ns
t _W	Minimum Pulse Width, Clock or Clear		10	16	ns


AC Electrical Characteristics

 $\rm V_{CC} = 2.0V$ to 6.0V, $\rm C_L = 50$ pF, $\rm t_f = t_f = 6$ ns (unless otherwise specified)


Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		T _A = -40 to 85°C	T _A = -55 to 125°C	Units
Cymbol				Тур		Guaranteed L	imits	
f _{MAX}	Maximum Operating		2.0V	12	6	5	4	MHz
	Frequency		4.5V	60	30	24	20	MHz
			6.0V	70	35	28	24	MHz
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	150	190	225	ns
	Delay, Clock to Q or Q		4.5V	15	30	38	45	ns
			6.0V	13	26	32	38	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	64	125	158	186	ns
	Delay, Reset to Q or Q		4.5V	14	25	32	37	ns
			6.0V	12	21	27	32	ns
t _{REM}	Minimum Removal Time		2.0V		100	125	150	ns
	Clear to Clock		4.5V		20	25	30	ns
			6.0V		17	21	25	ns
t _S	Minimum Setup Time		2.0V		100	125	150	ns
	Data to Clock		4.5V		20	25	30	ns
			6.0V		17	21	25	ns
t _H	Minimum Hold Time		2.0V		0	0	0	ns
	Data from Clock		4.5V		0	0	0	ns
			6.0V		0	0	0	ns
t _W	Minimum Pulse Width		2.0V	30	80	100	120	ns
	Clear or Clock		4.5V	9	16	20	24	ns
			6.0V	8	14	17	20	ns
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	1000	ns
	Fall Time		4.5V		500	500	500	ns
			6.0V		400	400	400	ns
t _{TLH} , t _{THL}	Maximum		2.0V	30	75	95	110	ns
	Output Rise and		4.5V	9	15	19	22	ns
	Fall Time		6.0V	8	13	16	19	ns
C _{PD}	Power Dissipation	(per package)		150				pF
	Capacitance (Note 5)	(per package)						
C _{IN}	Maximum Input			5	10	10	10	pF
	Capacitance							

 $\mbox{Note 5: } C_{PD} \mbox{ determines the no load dynamic power consumption, } P_D = C_{PD} \mbox{ V_{CC}}^2 + I_{CC} \mbox{ V_{CC}}, \mbox{ and the no load dynamic current consumption, } I_S = C_{PD} \mbox{ V_{CC}}^2 + I_{CC}.$

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and severally, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and ho

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative