imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR TM

MM74HC393 Dual 4-Bit Binary Counter

General Description

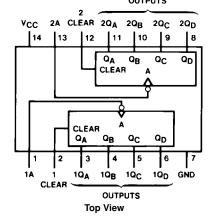
The MM74HC393 counter circuits contain independent ripple carry counters and utilize advanced silicon-gate CMOS technology. The MM74HC393 contains two 4-bit ripple carry binary counters, which can be cascaded to create a single divide-by-256 counter.

Each of the two 4-bit counters is incremented on the HIGHto-LOW transition (negative edge) of the clock input, and each has an independent clear input. When clear is set HIGH all four bits of each counter are set to a low level. This enables count truncation and allows the implementation of divide-by-N counter configurations.

Each of the counters outputs can drive 10 low power Schottky TTL equivalent loads. This counter is functionally as well as pin equivalent to the 74LS393. All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and ground.

Features

- Typical operating frequency: 50 MHz
- Typical propagation delay: 13 ns (Ck to Q_A)
- Wide operating supply voltage range: 2–6V
- Low input current: <1 µA</p>
- Low quiescent supply current: 80 µA maximum (74HC Series)
- Fanout of 10 LS-TTL loads


Ordering Code:

Order Number Package Package Description		Package Description
MM74HC393M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC393SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC393MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC393N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP OUTPUTS

www.fairchildsemi.com

(Note 2)

(Note 1)

Absolute Maximum Ratings

Recommended Operating Conditions

()	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (VIN)	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those	e values l	beyond whi	ich dam-

age to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
Symbol			*cc	Тур		Guaranteed L	imits	onits	
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V	
	Input Voltage		4.5V		3.15	3.15	3.15	V	
			6.0V		4.2	4.2	4.2	V	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V	
	Input Voltage		4.5V		1.35	1.35	1.35	V	
			6.0V		1.8	1.8	1.8	V	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$							
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V	
			4.5V	4.5	4.4	4.4	4.4	V	
			6.0V	6.0	5.9	5.9	5.9	V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$							
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$							
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V	
			4.5V	0	0.1	0.1	0.1	V	
			6.0V	0	0.1	0.1	0.1	V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$							
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA	
	Current								
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μA	
	Supply Current	$I_{OUT} = 0 \ \mu A$							

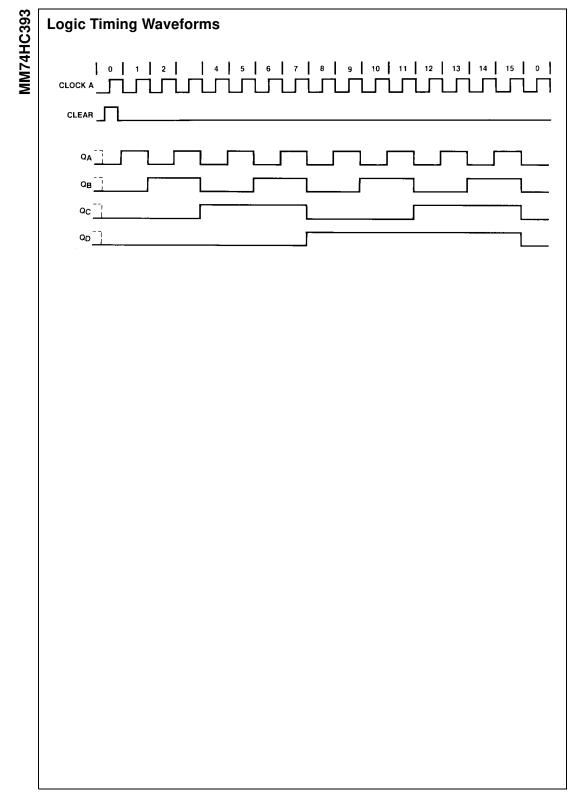
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_H and V_L occur at V_{CC} = 5.5V at 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

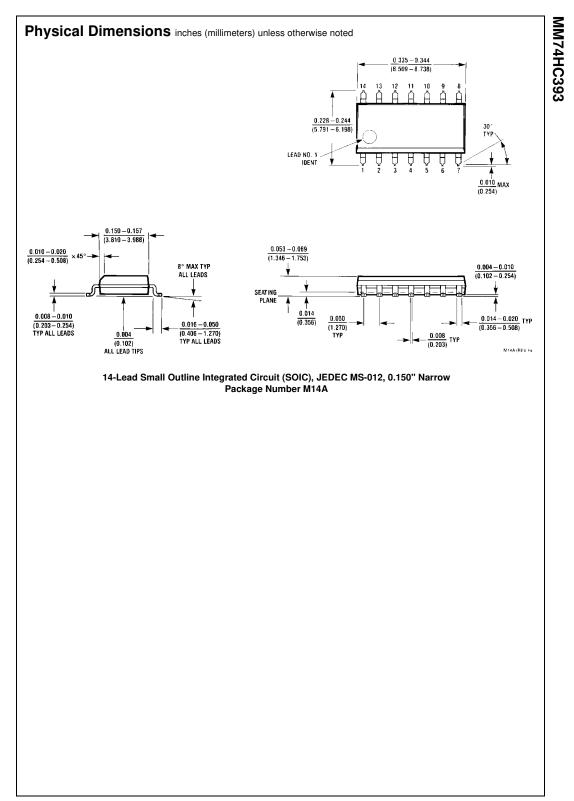
AC Electrical	Characteristics
	onuracionstics

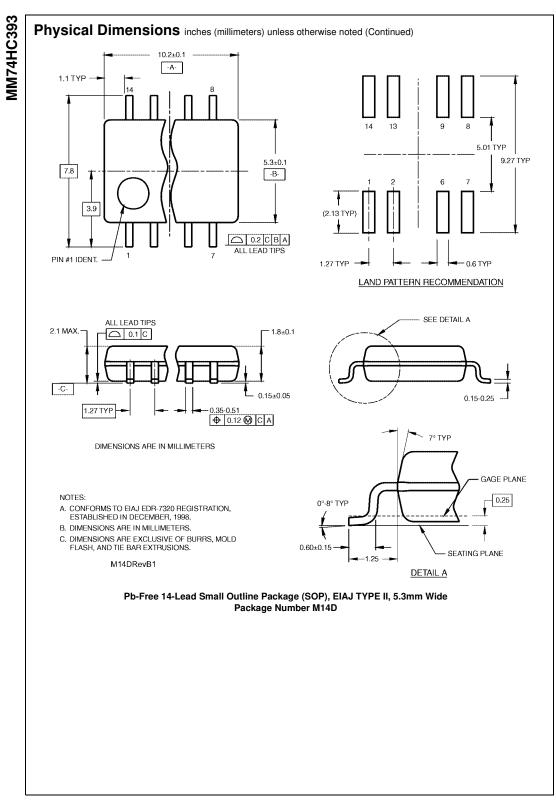
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to QA		13	20	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to QB		19	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to Q_C		23	42	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to QD		27	50	ns
t _{PHL}	Maximum Propagation Delay, Clear to any Q		15	28	ns
t _{REM}	Minimum Removal Time		-2	5	ns
tw	Minimum Pulse Width Clear or Clock		10	16	ns

AC Electrical Characteristics

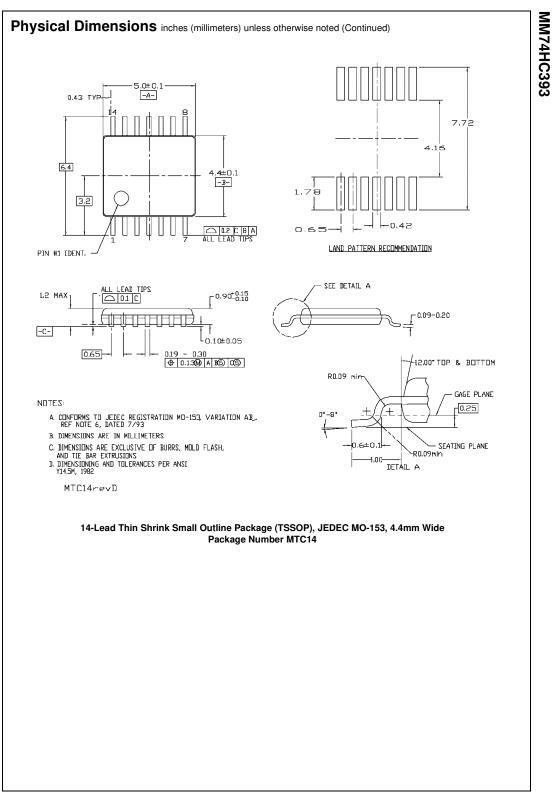
$C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)
---	-----------------------------

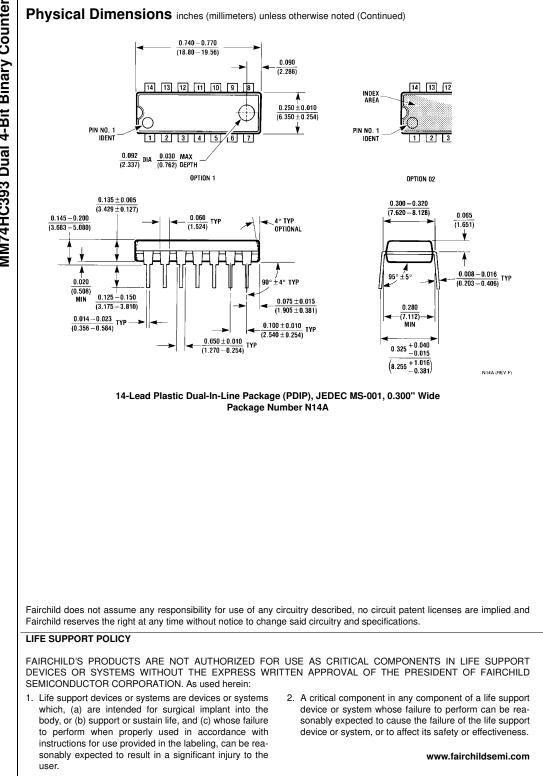

Symbol	Parameter	Conditions	V _{cc}	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	T _A = −55 to 125°C	Units
Symbol	Parameter		*cc	Тур		Guaranteed L	imits	Units
f _{MAX}	Maximum Operating	1	2.0V		5	4	3	
	Frequency	l	4.5V		27	21	18	MHz
		1	6.0V		31	24	20	MHz
t _{PHL} , t _{PLH}	Maximum Propagation	1	2.0V	45	120	150	180	ns
	Delay Clock A to QA	l	4.5V	15	24	30	35	ns
		I	6.0V	13	21	26	31	ns
t _{PHL} , t _{PLH}	Maximum Propagation	1	2.0V	68	190	240	285	ns
	Delay Clock A to Q _B	l	4.5V	23	38	47	57	ns
		I	6.0V	20	32	40	48	ns
t _{PHL} , t _{PLH}	Maximum Propagation	1	2.0V	90	240	300	360	ns
	Delay Clock A to Q _C	I	4.5V	30	48	60	72	ns
		I	6.0V	26	41	51	61	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay	1	2.0V	100	290	360	430	ns
	Clock to Q _D	l	4.5V	35	58	72	87	ns
		l	6.0V	30	50	62	75	ns
t _{PHL}	Maximum Propagation	i	2.0V	54	165	210	250	ns
	Delay Clear to any Q	l	4.5V	18	33	41	49	ns
		1	6.0V	15	28	35	42	ns
t _{REM}	Minimum Clear	i	2.0V		25	25	25	ns
	Removal Time	1	4.5V		5	5	5	ns
		l	6.0V		5	5	5	ns
t _W	Minimum Pulse Width	1	2.0V	30	80	100	120	ns
	Clear or Clock	I	4.5V	10	16	20	24	ns
		1	6.0V	9	14	18	20	ns
t _{THL} , t _{TLH}	Maximum Output	i	2.0V	30	75	95	110	ns
	Rise and Fall Time	l	4.5V	8	15	19	22	ns
		1	6.0V	7	13	16	19	ns
t _r , t _f	Maximum Input	i	1		1000	1000	1000	ns
	Rise and Fall Time	l			500	500	500	ns
		I			400	400	400	ns
C _{PD}	Power Dissipation	(per counter)	-	42	1	1	<u> </u>	pF
	Capacitance (Note 5)	l						1
CIN	Maximum Input Capacitance	1		5	10	10	10	pF


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}^2 f + I_{CC}$.


www.fairchildsemi.com

MM74HC393


3



www.fairchildsemi.com

MM74HC393 Dual 4-Bit Binary Counter

www.fairchildsemi.com