: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Absolute Maximum Ratings(Note 1)
(Note 2)
Supply Voltage (V_{CC})
Supply Voltage (V_{EE})
DC Control Input Voltage (V_{IN})
DC Switch I/O Voltage (V_{IO})
Clamp Diode Current ($I_{\mathrm{IK}}, \mathrm{I}_{\mathrm{OK}}$)
DC Output Current, per pin (IOUT)
DC V_{CC} or GND Current, per pin (I_{CC})
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Power Dissipation (P_{D})
(Note 3)
S.O. Package only

Lead Temperature (T_{L})
(Soldering 10 seconds)

Recommended Operating Conditions

-0.5 to +7.5 V		Min	Max
+0.5 to -7.5 V	Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6
-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$	Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	V	
$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	DC Input or Output Voltage	0	-6
$\pm 20 \mathrm{~mA}$	$\left(\mathrm{~V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}\right)$	V	
$\pm 25 \mathrm{~mA}$	Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	-40	+85
$\pm 50 \mathrm{~mA}$	Input Rise or Fall Times	${ }^{\circ} \mathrm{C}$	
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	($\left.\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right) \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		
	$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1000	ns
600 mW	$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	500	ns
500 mW	$\mathrm{~V}_{\mathrm{CC}}=12.0 \mathrm{~V}$	400	ns
		250	ns

Note 1: Absolute Maximum Ratings are those values beyond which dam$260^{\circ} \mathrm{C}$

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating - plastic "N" package: $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{EE}	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
					Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage			$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
R_{ON}	Minimum "ON" Resistance (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ (Figure 1)	$\begin{array}{\|c\|} \hline \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{array}$	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} 170 \\ 85 \\ 70 \end{gathered}$	$\begin{gathered} 200 \\ 105 \\ 85 \end{gathered}$	$\begin{gathered} 220 \\ 110 \\ 90 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure 1) } \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 40 \\ 50 \\ 20 \end{gathered}$	$\begin{gathered} \hline 180 \\ 80 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} \hline 215 \\ 100 \\ 75 \\ 60 \end{gathered}$	$\begin{gathered} 240 \\ 120 \\ 80 \\ 70 \end{gathered}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
R_{ON}	Maximum "ON" Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
I_{IN}	Maximum Control Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$I_{I Z}$	Maximum Switch "OFF" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}} \text { (Figure 2) } \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$I_{I Z}$	Maximum Switch "ON" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OS}}=\mathrm{OPEN} \end{aligned}$ (Figure 3)	$\begin{gathered} \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 40 \\ & \pm 60 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
I_{CC}	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} \hline 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing
with this supply. Worst case V_{IH} and $\mathrm{V}_{I L}$ occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The $\mathrm{V}_{I H}$ value at 5.5 V is 3.85 V .) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5 V values should be used
Note 5: At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

AC Test Circuits and Switching Time Waveforms (Continued)

$V_{I S(1)}$

FIGURE 9. : Crosstalk Between Any Two Switches

FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

Typical "ON" Resistance

Typical Crosstaik Between Any Two Switches

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into
the analog switch input pins, the voltage drop across the switch must not exceed 0.6 V (calculated from the On Resistance).

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
