imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

September 1983 Revised September 2001

FAIRCHILD

SEMICONDUCTOR

MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

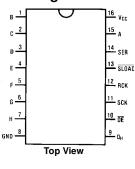
General Description

The MM74HC589 high speed shift register utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.

The MM74HC589 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8bit shift register. Data can also be entered serially the shift register through the SER pin. Both the storage register and shift register have <u>positive-</u>edge triggered clocks, RCK and SCK, respectively. <u>SLOAD</u> pin controls parallel LOAD or serial shift operations for the shift register. The shift register has a 3-STATE output to enable the wire-ORing of multiple devices on a serial bus.

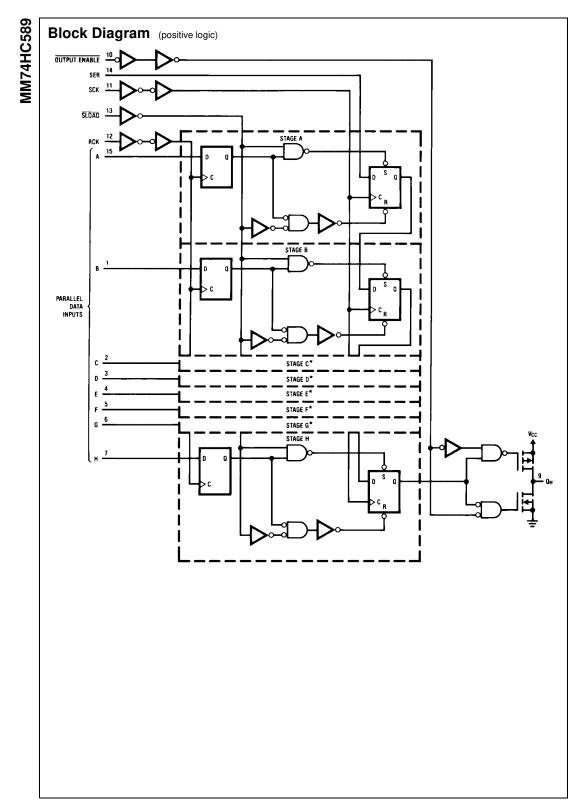
The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

Features


- 8-bit parallel storage register inputs
- Wide operating voltage range: 2V–6V
- Shift register has direct overriding load
- Guaranteed shift frequency. . . DC to 30 MHz
 Low quiescent current: 80 μA maximum (74HC Series)
- Low quiescent current: 80 µA maximum (74
- 3-STATE output for 'Wire-OR'

Ordering Code:

Order Number	Package Number	Package Description
MM74HC589M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC589SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC589N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

RCK	scк	SLOAD	OE	Function
Х	Х	х	Н	Q _H in Hi-Z State
Х	Х	Х	L	Q _H is enabled
\uparrow	Х	Х	Х	Data loaded into input latches
\uparrow	Х	L	Х	Data loaded into shift register
				from pins
H or L	Х	L	Х	Data loaded from latches to
				shift register
Х	Ŷ	Н	Х	Shift register is shifted. Data
				on SER pin is shifted in.
\uparrow	\uparrow	Н	Х	Data is shifted in shift register,
				and data is loaded into latches

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

	•
(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	yond whic	ch dam-

MM74HC589

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{cc}	T _A =	25°C	$T_{A}=-40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Farameter	Conditions	*cc	Тур		Guaranteed L	imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \leq 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V		3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V		5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \leq 20 \; \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V		0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V		0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						
l _{oz}	Maximum 3-STATE	Output in High	6.0V		±0.5	±5.0	±10.0	μA
	Leakage Current	Impedance State						
		$V_{IN} = V_{IL} \text{ or } V_{IH}$						
		$V_{OUT} = V_{CC} \text{ or } GND$	1					
		$\overline{OE} = V_{IH}$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

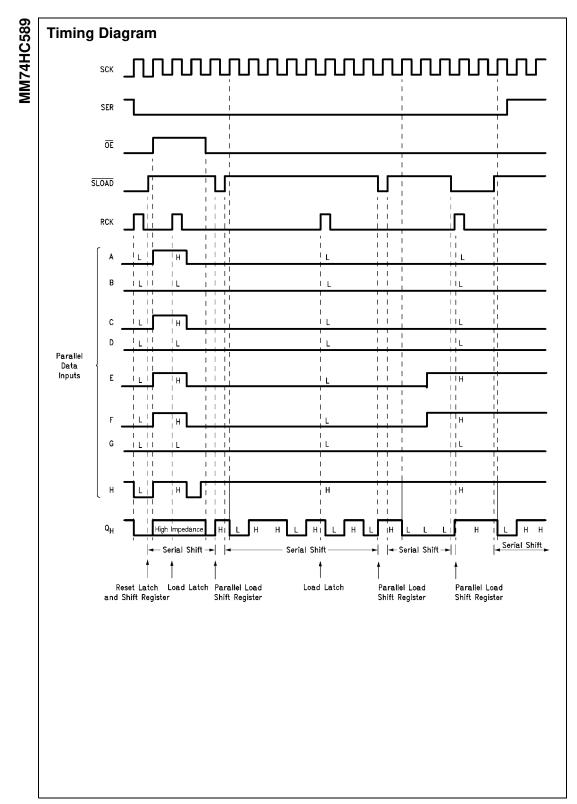
AC Electrical Characteristics

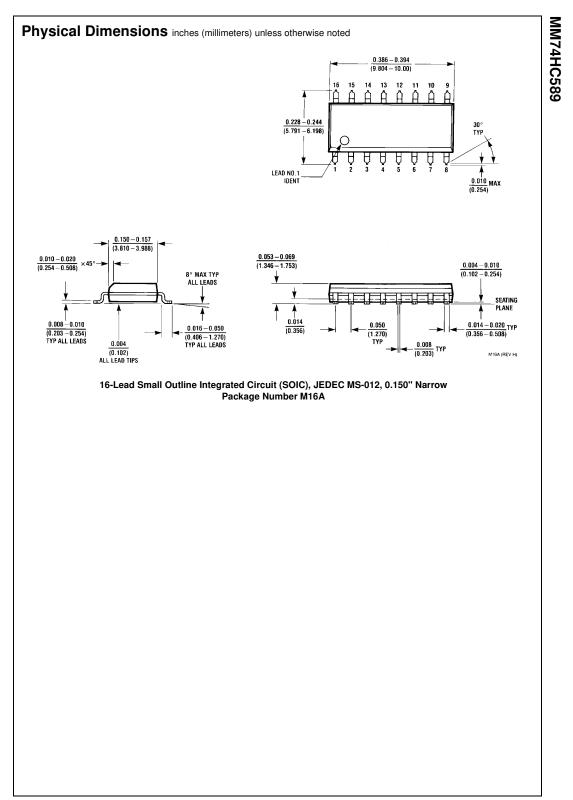
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency for SCK		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from SCK to $Q_{H'}$			30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from $\overline{\text{SLOAD}}$ to $\text{Q}_{\text{H}'}$			30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from LCK to Q _{H'}	SLOAD = logic "0"	25	45	ns
t _{PZH} , t _{PZL}	Output Enable Time	$R_L = 1 k\Omega$	18	28	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	$R_L = 1 \ k\Omega, \ C_L = 5 \ pF$	19	25	ns
ts	Minimum Setup Time from RCK to SCK		10	20	ns
ts	Minimum Setup Time from SER to SCK		10	20	ns
t _S	Minimum Setup Time from Inputs A thru H to RCK		10	20	ns
t _H	Minimum Hold Time		0	5	ns
tw	Minimum Pulse Width SCK, RCK, SLOAD		8	16	ns

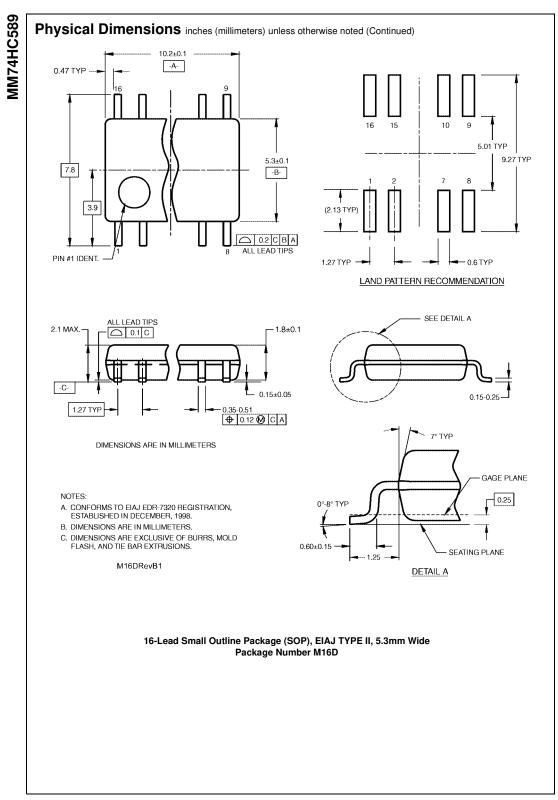
AC Electrical Characteristics

 V_{CC} = 2.0–6V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	Units	
Symbol	Falameter	Conditions	•00	Тур		Guaranteed Limits		
f _{MAX}	Maximum Operating		2.0V		6	4.8	4	MHz
	Frequency for SCK		4.5V		30	24	20	MHz
			6.0V		35	28	24	MHz
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	62	175	220	265	ns
	Delay from SCK or		4.5V	20	35	44	53	ns
	SLOAD to Q _H		6.0V	18	30	37	45	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	120	225	280	340	ns
	Delay from SCK or	C _L = 150 pF	4.5V	31	45	56	68	ns
	SLOAD to Q _H		6.0V	28	38	48	58	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	315	ns
	Delay from RCK to Q _H		4.5V	25	42	53	63	ns
			6.0V	21	36	45	54	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	313	ns
	Delay RCK to Q _H	$C_{I} = 150 \text{ pF}$	4.5V	25	52	66	77	ns
	<i>,</i> ,		6.0V	21	44	56	66	ns
t _{PZH} , t _{PZL}	Output Enable Time	$R_{I} = 1 k\Omega$	2.0V	70	150	189	224	ns
		-	4.5V	22	30	38	45	ns
			6.0V	20	26	32	38	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	$R_L = 1 k\Omega$	2.0V	70	150	189	224	ns
		-	4.5V	22	30	38	45	ns
			6.0V	20	26	32	38	ns
ts	Minimum Setup Time		2.0V	-	100	125	150	ns
0	from RCK to SCK		4.5V		20	25	30	ns
			6.0V		17	22	25	ns
ts	Minimum Setup Time		2.0V		100	125	150	ns
.0	from SER to SCK		4.5V		20	25	30	ns
			6.0V		17	22	25	ns
ts	Minimum Setup Time		2.0V	-	100	125	150	ns
0	from Inputs A thru H		4.5V		20	25	30	ns
	to RCK		6.0V		17	22	25	ns
t _H	Minimum Hold Time		2.0V	-5	5	5	5	ns
			4.5V	0	5	5	5	ns
			6.0V	1	5	5	5	ns
tw	Minimum Pulse Width		2.0V	30	80	100	120	ns
- • •	SCK, RCK, SLOAD,		4.5V	9	16	20	24	ns
	SLOAD		6.0V	8	14	17	20	ns

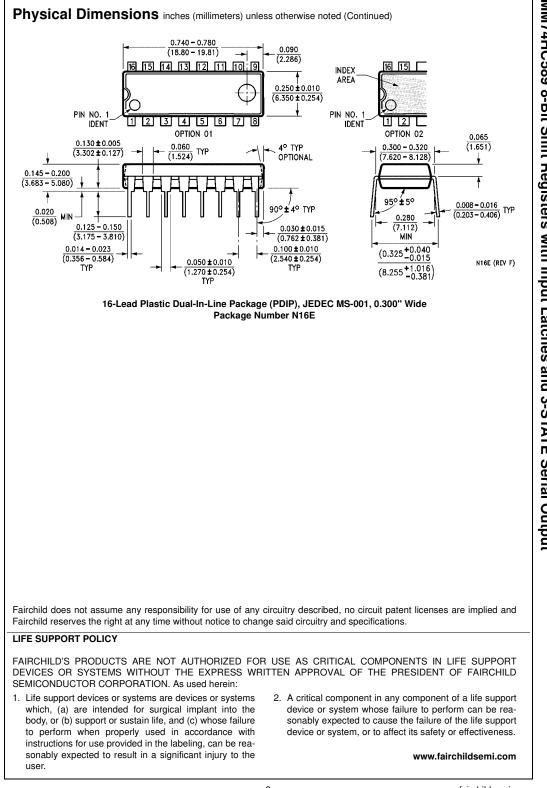

www.fairchildsemi.com


I


AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40$ to 85°C $T_A = -55$ to 12		C Units
Symbol	rarameter		•00	Тур		Guaranteed L	imits	Units
t _r , t _f	Maximum Input Rise and		2.0V		1500	1500	1500	ns
	Fall Time, Clock		4.5V		500	500	500	ns
			6.0V		400	400	400	ns
t _{THL} , t _{TLH}	Maximum Output		2.0V	25	60	75	90	ns
	Rise and Fall Time		4.5V	6	12	15	18	ns
			6.0V	5	10	12	15	ns
C _{PD}	Power Dissipation			87				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
COUT	Maximum Output Capacitance			15	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} sf + I_{CC}$.



www.fairchildsemi.com

8

MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output