imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

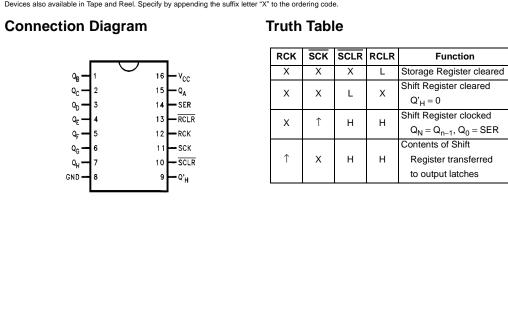
SEMICONDUCTOR

MM74HC594 8-Bit Shift Register with Output Registers

General Description

This high speed shift register utilizes advanced silicon-gate CMOS technology. This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks and direct overriding clears are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.


The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Low quiescent current: 80 µA maximum
- Low input current: 1 µA maximum
- 8-bit serial-in, parallel-out shift register with storage
- Wide operating voltage range: 2V to 6V
- Cascadable
- Shift register has direct clear
- Guaranteed shift frequency: DC to30 MHz

Ordering Code:

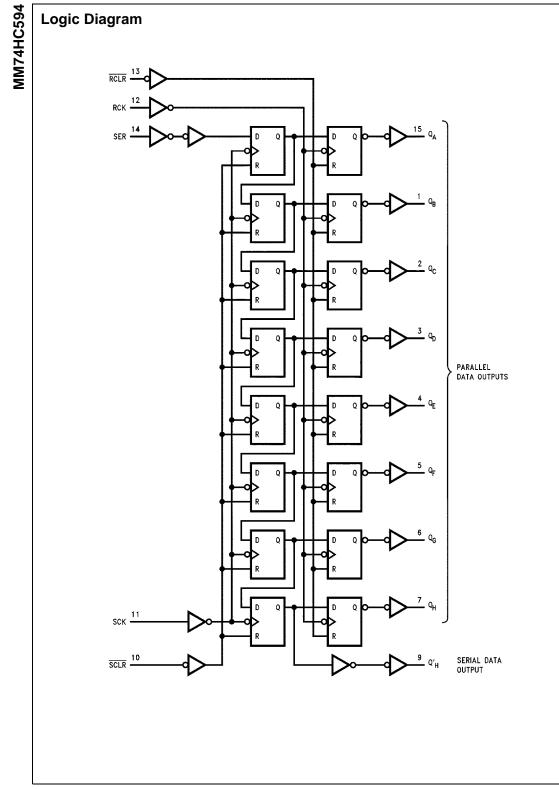
Order Number	Package Number	Package Description
MM74HC594M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
MM74HC594N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tong and Deal Coggify	by expending the suffix letter "V" to the ordering code

DS010915.prf © 1999 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Function

Shift Register clocked


Contents of Shift

 $\boldsymbol{Q}_N = \boldsymbol{Q}_{n-1}, \, \boldsymbol{Q}_0 = \boldsymbol{SER}$

Register transferred

to output latches

 $Q'_{H} = 0$

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operation Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V_CC +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Min Max Units Supply Voltage (V_{CC}) 2 6 V DC Input or Output Voltage 0 V_{CC} V (V_{IN}, V_{OUT}) Operating Temperature Range (T_A) -40 +85 °C Input Rise or Fall Times $(t_r, t_f) \quad V_{CC} = 2.0V$ 1000 ns $V_{CC} = 4.5V$ 500 ns $V_{CC} = 6.0V$ 400 ns

MM74HC594

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	Units
Symbol	Farameter	Conditions	VCC	Тур	Gua	ranteed Limits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	V
			6.0V		4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	v
			4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	
	Q' _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.7	3.98	3.84	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.2	5.48	5.34	
	Q _A thru Q _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	v
			4.5V	0	0.1	0.1	v
			6.0V	0	0.1	0.1	
	Q' _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	
	Q _A thru Q _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		I _{OUT} ≤ 6.0 mA	4.5V	0.2	0.26	0.33	V
		I _{OUT} ≤ 7.8 mA	6.0V	0.2	0.26	0.33	
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	μA
	Current						
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		8.0	80	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

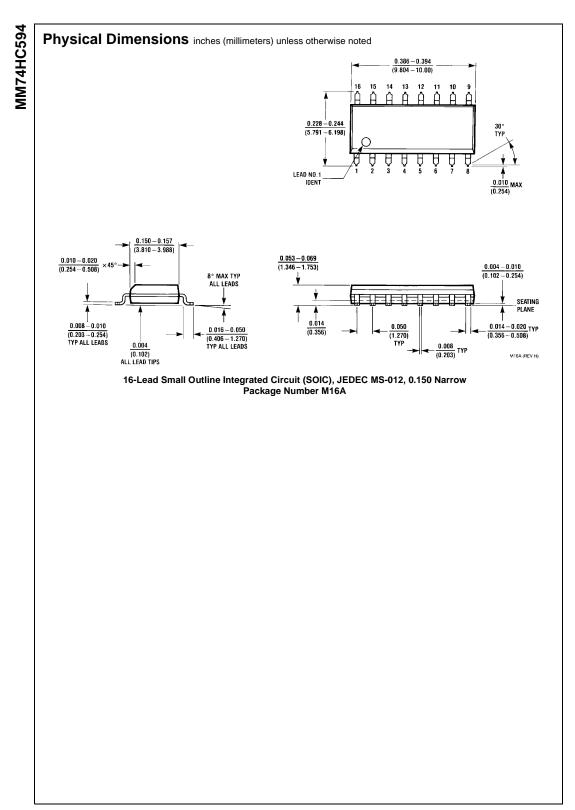
www.fairchildsemi.com

3

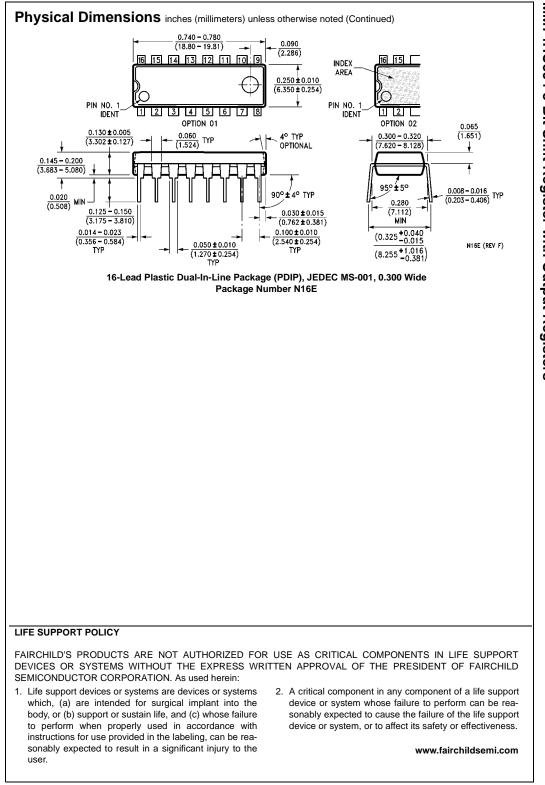
4
ດ
ŝ
C
Т
4
N
5
2

AC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	I _A =	25°C	–40°C to +85°C	Units
Gymbol	ranameter	Conditions	•00	Тур	Gua	ranteed Limits	0111
f _{MAX}	Maximum Operating	$C_L = 50 \text{ pF}$	2.0V		6	4.8	
	Frequency		4.5V		30	24	MH
			6.0V		35	28	
PHL, t _{PLH}	Maximum Propagation Delay	C _L = 50 pF	2.0V		150	185	
	from SCK to Q' _H		4.5V		30	37	ns
			6.0V		25	31	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 50 pF	2.0V		150	185	
	from RCK to Q _A thru Q _H	C _L = 150 pF	2.0V		200	250	ns
		$C_L = 50 \text{ pF}$	4.5V		30	37	
		$C_{L} = 150 \text{ pF}$	4.5V		40	50	ns
		$C_L = 50 \text{ pF}$	6.0V		25	31	
			6.0V		34	43	ns
	Maximum Draw antian Dalay	C _L = 150 pF					
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V		150	185	
	from SCLR to Q' _H		4.5V		30	37	ns
			6.0V		25	31	
PHL	Maximum Propagation Delay	$C_L = 50 \text{ pF}$	2.0V		125	155	
	from RCLR to Q _A thru Q _H		4.5V		25	31	ns
			6.0V		21	26	
		C _L = 150 pF	2.0V		200	250	
			4.5V		40	50	ns
			6.0V		34	43	
ts	SCLR LOW to RCK		2.0V		50	63	
3			4.5V		10	13	ns
			6.0V		9	10	
					5	5	
t _S	RCLR HIGH to SCK		2.0V				
			4.5V		5	5	ns
			6.0V		5	5	
ts	Minimum Setup Time		2.0V		90	110	
	from SER to SCK		4.5V		18	22	ns
			6.0V		15	19	
t _R	Minimum Removal Time		2.0V		20	20	
	from SCLR to SCK	4.5V 10 10	10	ns			
			6.0V		10	10	
ts	Minimum Setup Time		2.0V		90	110	
	from SCK to RCK		4.5V		18	22	ns
			6.0V		15	19	
t _H	Minimum Hold Time		2.0V		5	5	
	SER to SCK		4.5V		5	5	ns
			6.0V		5	5	
t _W	Minimum Pulse Width		2.0V		100	125	
٩V	of SCK or SCLR or		4.5V		20	25	
							ns
	RCK or RCLR		6.0V		17	21	
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	
	Fall Time, Clock		4.5V		500	500	ns
			6.0V		400	400	
t _{THL} , t _{TLH}	Maximum Output		2.0V		60	75	
	Rise and Fall Time		4.5V		12	15	ns
	Q _A - Q _H		6.0V		10	13	
t _{THL} , t _{TLH}	Maximum Output		2.0V		75	95	
	Rise and Fall Time		4.5V		15	19	ns
	Q' _H	1	6.0V		13	16	1


www.fairchildsemi.com

AC Electrical Characteristics (Continued)


	ectrical Characte		u)				
Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		–40°C to +85°C	Units
			*cc	Тур	Gua	ranteed Limits	Units
C _{PD}	Power Dissipation Capacitance,	$\overline{G} = V_{CC}$		90			pF
	Outputs Enabled (Note 5)	$\overline{G} = GND$		150			
C _{IN}	Maximum Input Capacitance			5	10	10	pF
COUT	Maximum Output Capacitance			15	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, and the no load dynamic current consumption.

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.