imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

June 2009

MM74HC595 8-Bit Shift Register with Output Latches

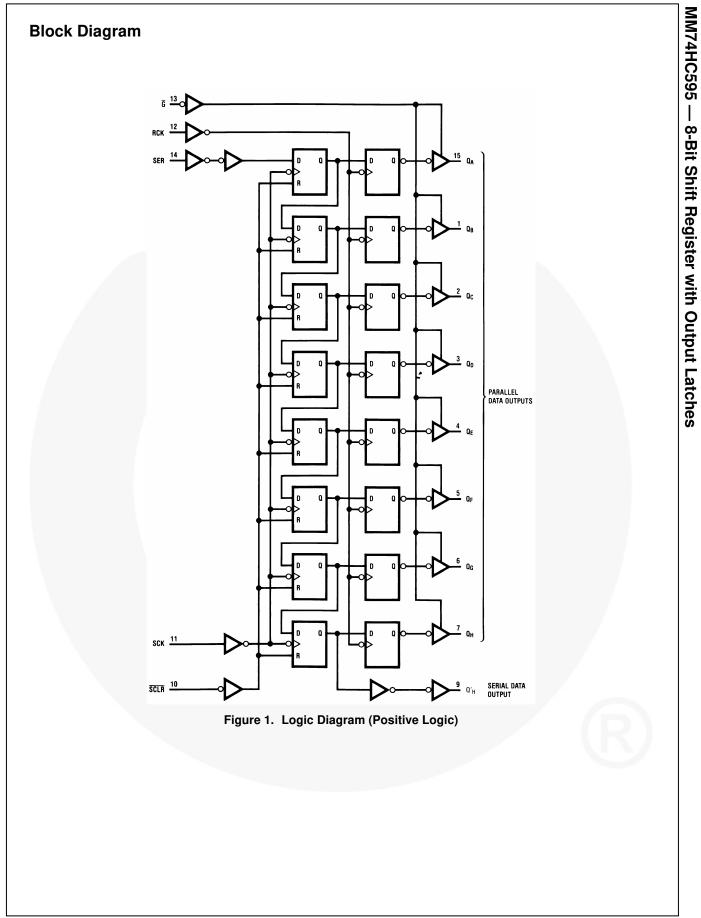
Features

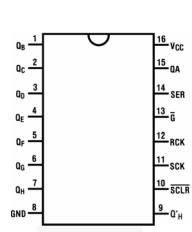
SEMICONDUCTOR

- Low Quiescent current: 80µA Maximum (74HC Series)
- Low Input Current: 1µA Maximum
- 8-Bit Serial-In, Parallel-Out Shift Register with Storage
- Wide Operating Voltage Range: 2V–6V
- Cascadable
- Shift Register has Direct Clear
- Guaranteed Shift Frequency: DC to 30MHz

Description

The MM74HC595 high-speed shift register utilizes advanced silicon-gate CMOS technology. This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.


This device contains an eight-bit serial-in, parallel-out, shift register that feeds an eight-bit D-type storage register. The storage register has eight 3-state outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a directoverriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state is one clock pulse ahead of the storage register.


The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Ordering Information

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method
MM74HC595M	-40 to +85°C	RoHS	16-Lead, Small Outline Integrated Circuit (SOIC),	Tubes
MM74HC595MX	-40 to +85°C	RoHS	JEDEC MS-012, 0.150 Inch Narrow	Tape and Reel
MM74HC595SJ	-40 to +85°C	RoHS	16-Lead, Small Outline Package (SOP), EIAJ	Tubes
MM74HC595SJX	-40 to +85°C	RoHS	TYPE II, 5.3mm Wide	Tape and Reel
MM74HC595MTC	-40 to +85°C	RoHS	16-Lead, Thin Shrink Small Outline Package	Tubes
MM74HC595MTCX	-40 to +85°C	RoHS	(TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel
MM74HC595N	-40 to +85°C	RoHS	16-Lead, Plastic Dual In-Line Package (PDIP), JEDEC MS-001, 0.300 Inch Wide	Tubes

Ø For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

Pin Definitions

Pin Configuration

Pin #	Name	Description
1	Q _B	Output Bit B
2	Q _C	Output Bit C
3	QD	Output Bit D
4	Q _E	Output Bit E
5	Q _F	Output Bit F
6	Q_{G}	Output Bit G
7	Q _H	Output Bit H
8	GND	Ground
9	Q' _H	Serial Data Output
10	SCLR	Shift Register Clear
11	SCK	Shift Register Clock Input
12	RCK	Storage Register Clock Input
13	G	Output Enable
14	SER	Serial Data Input
15	QA	Output Bit A
16	V _{cc}	Supply Voltage

Truth Table

RCK	SCK	SCLR	G	Function
Х	Х	Х	Н	QA through Q _H = 3-state
Х	Х	L	L	Shift register clocked; Q' _H = 0
Х	\uparrow	Н	L	Shift register clocked; $Q_N = Q_{n-1}$, $Q_0 = SER$
\uparrow	Х	Н	L	Contents of shift; register transferred to output latches

L = Logic Level LOW

H = Logic Level HIGH

X = Don't Care

 \uparrow = Transition from LOW to HIGH level

MM74HC595 — 8-Bit Shift Register with Output Latches

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Param	eter	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	7.0	V
V _{IN}	DC Input Voltage		-1.5 to V_{CC^+}	1.5	V
V _{OUT}	DC Output Voltage		-0.5 to V_{CC^+}	0.5	V
I _{IK} , I _{OK}	Clamp Diode Current			±20	mA
IOUT	DC Output Current, per Pin			±35	mA
I _{CC}	DC VCC or GND Current, per Pin			±70	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
Р	Power Dissinction	PDIP ⁽²⁾		600	m)//
PD	Power Dissipation	SOIC Package Only		500	mW
TL	Lead Temperature			+260	°C
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114		4000	V

Notes:

- 1. Unless otherwise specified all voltages are referenced to ground.
- 2. Power dissipation temperature derating, plastic package (PDIP);12mW/°C from -65 to +85°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter			Max.	Unit
V _{cc}	Supply Voltage	2	6	V	
VIN, VOUT	DC Input or Output Voltage	0	Vcc	V	
T _A	Operating Temperature Range	-40	+85	°C	
		V _{CC} =2.0V		1000	
t _R ,t _F Input Rise and Fall Times		V _{CC} =4.5V		500	ns
		V _{CC} =6.0V		400	

Symbol Parame	Parameter	Conditions		V _{cc}	T _A =25°C		T _A =-40 to 85°C	T _A =-55 to 125°C	Units		
					Тур.	G	uaranteed I				
	Minimum HIGH			2.0V		1.50	1.50	1.50			
VIH	Level Input			4.5V		3.15	3.15	3.15	V		
	Voltage			6.0V		4.20	4.20	4.20			
	Minimum LOW			2.0V		0.50	0.50	0.50			
VIL	Level Input			4.5V		1.35	1.35	1.35	V		
	Voltage			6.0V		1.80	1.80	1.80			
	Minimum HIGH			2.0V	2.00	1.90	1.90	1.90			
	Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OUT} ≤20μΑ	4.5V	4.50	4.40	4.40	4.40	V		
	Voltage			6.0V	6.00	5.90	5.90	5.90			
Vон	Q' _H	V _{IN} =V _{IH} or V _{IL}	I _{OUT} ≤4.0mA	4.5V	4.20	3.98	3.84	3.70	v		
	QH		I _{OUT} ≤5.2mA	6.0V	5.20	5.48	5.34	5.20	v		
		V _{IN} =V _{IH} or V _{IL}	I _{OUT} ≤6.0mA	4.5V	4.20	3.98	3.84	3.70	v		
	Q_A through Q_H		I _{OUT} ≤7.8mA	6.0V	5.70	5.48	5.34	5.20			
	Minimum I OW	Minimum I OW	Minimum LOW			2.0V	0	0.10	0.10	0.10	
	Level Output	V _{IN} =V _{IH} or V _{IL}	V _{IN} =V _{IH} or V _{IL} I _{OUT} ≤20µA	4.5V	0	0.10	0.10	0.10	V		
	Voltage			6.0V	0	0.10	0.10	0.10			
Vol			I _{OUT} ≤4.0mA	4.5V	0.20	0.26	0.33	0.40	v		
	Q' _H	$V_{IN}=V_{IH}$ or V_{IL}	I _{OUT} ≤5.2mA	6.0V	0.20	0.26	0.33	0.40	V		
		., ., .,	I _{OUT} ≤6.0mA	4.5V	0.20	0.26	0.33	0.40	.,		
	Q_A through Q_H	$V_{IN}=V_{IH} \text{ or } V_{IL}$	I _{OUT} ≤7.8mA	6.0V	0.20	0.26	0.33	0.40	V		
I _{IN}	Maximum Input Output Leakage	$V_{IN}=V_{CC}$ or GN	D	6.0V		±0.1	±1.0	±1.0	μA		
l _{oz}	Maximum 3- State Output Leakage	V _{OUT} =V _{CC} or GND	G=V _{IH}	6.0V		±0.5	±5.0	±10	μA		
I _{CC}	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND	Ι _{ουτ} =μΑ	6.0V		8.0	80	160	μA		

Note:

3. For a power supply of 5V \pm 10%, the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. The 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V, respectively; V_{IH} value at 5.5V is 3.85V. The worst-case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occurs for CMOS at the higher voltage; so the 6.0V values should be used.

AC Electrical Characteristics

 V_{CC} = 5V, T_A = 25°C, t_r = t_f = 6ns.

Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency of SCK		50	30	MHz
	Maximum Propagation Delay, SCK to Q'_H		12	20	
t _{PHL} ,t _{PLH}	Maximum Propagation Delay, RCK to Q_{A} thru Q'_{H}	C∟=45pF	18	30	ns
$t_{\text{PZH}}, t_{\text{PZL}}$	Maximum Output Enable Time from \overline{G} to Q_A thru Q'_H	$R_L=1k\Omega$, $C_L=45pF$	17	28	ns
t _{PHZ} ,t _{PLZ}	Maximum Output Disable Time from \overline{G} to Q_A thru Q'_H	$R_L=1k\Omega$, $C_L=45pF$	15	25	ns
	Minimum Setup Time from SER to SCK			20	ns
ts	Minimum Setup Time from SCLR to SCK			20	ns
•3	Minimum Setup Time from SER to RCK ⁽⁴⁾			40	ns
tн	Minimum Hold Time from SER to SCK			0	ns
tw	Minimum Pulse Width of SCK or RCK			16	ns

Note:

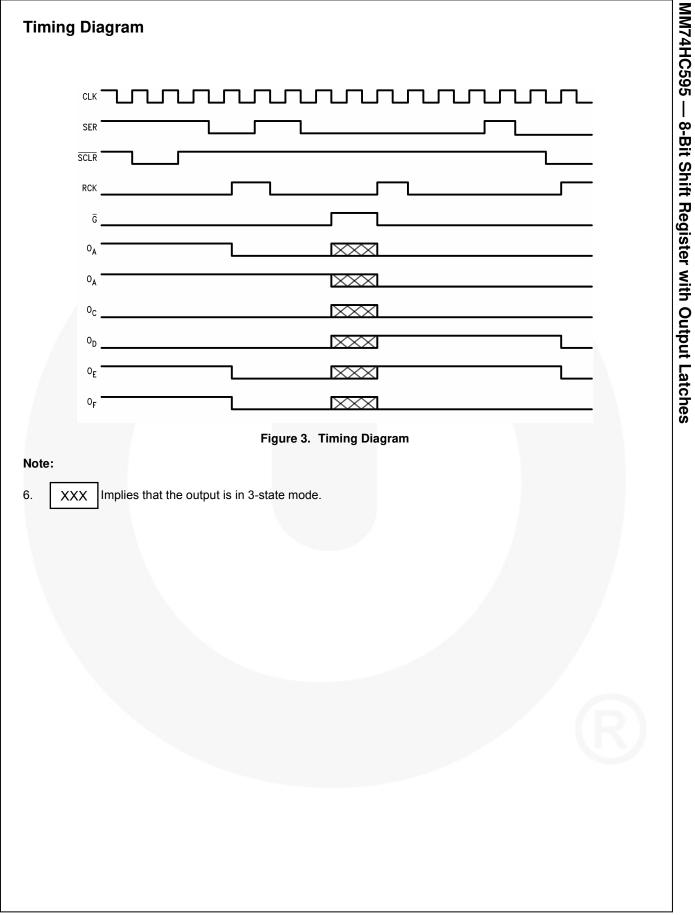
4. This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.

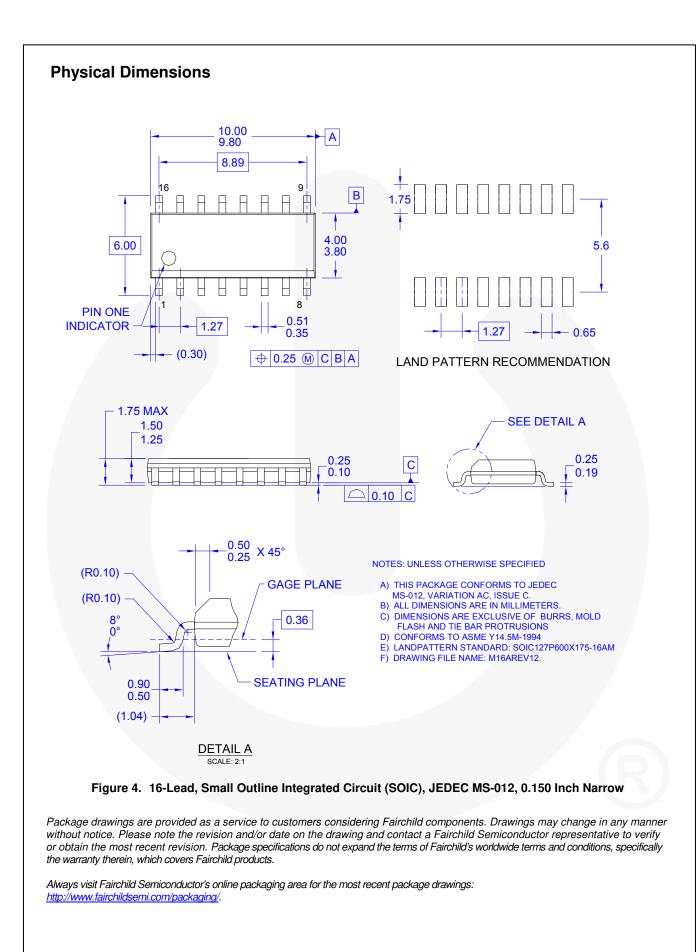
Electrical Characteristics

 V_{CC} = 2.0–6.0V, C_L = 50pF, t_r = t_f =6ns unless otherwise specified.

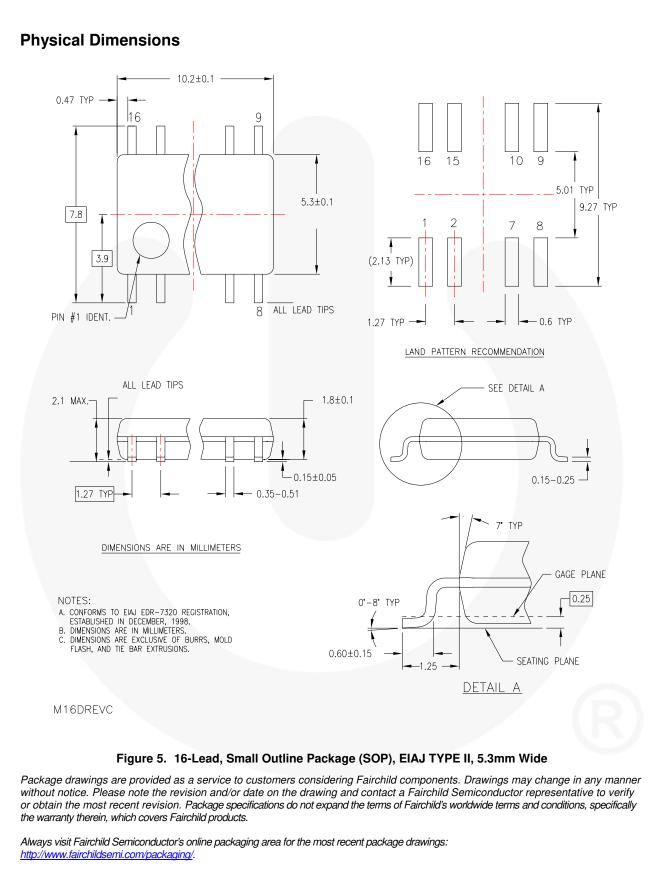
Symbol Parameter		Conditions		V _{cc}	T _A =25°C		T _A =-40 to 85°C	T _A =-55 to 125°C	Units
					Тур.	Gi	uaranteed I		
				2.0V	10.0	6.0	4.8	4.0	
\mathbf{f}_{MAX}	Maximum Operating Frequency	C∟=50pf	=	4.5V	45.0	30.0	24.0	20.0	ns
	linguing			6.0V	50.0	35.0	28.0	24.0	
		C _L =50pF	=	2.0V	58.0	210.0	235.0	315.0	
		C _L =150p	ρF	2.0V	83.0	294.0	367.0	441.0	
	Maximum Propagation	C _L =50pf	=	4.5V	14.0	42.0	53.0	63.0	ns
	Delay, SCK to Q'H	C _L =150p	ρF	4.5V	17.0	58.0	74.0	88.0	115
		CL=50pf	=	6.0V	10.0	36.0	45.0	54.0	
		C _L =150pF		6.0V	14.0	50.0	63.0	76.0	
		C∟=50pF		2.0V	70.0	175.0	220.0	265.0	- ns
t _{PHL} ,t _{PLH}	Maximum Propagation Delay, RCK to Q _A thru Q' _H	C _L =150pF		2.0V	105.0	245.0	306.0	368.0	
		C _L =50pF		4.5V	21.0	35.0	44.0	53.0	
		C _L =150pF		4.5V	28.0	49.0	61.0	74.0	
		C _L =50pF		6.0V	18.0	30.0	37.0	45.0	
		C _L =150pF		6.0V	26.0	42.0	53.0	63.0	
	Marian Dranastica			2.0V		175.0	221.0	261.0	
	Maxim <u>um Pr</u> opagation Delay, SCLR to Q' _H			4.5V		35.0	44.0	52.0	ns
	, , , , , , , , , , , , , , , , , , ,			6.0V		30.0	37.0	44.0	
			C∟=50pF	2.0V	75.0	175.0	220.0	265.0	
		R∟=1kΩ	$C_L=150pF$	2.0V	100.0	245.0	306.0	368.0	
t _{PZH} ,t _{PZL}	Maximum Output Enable	C _L =50pF		4.5V	15.0	35.0	44.0	53.0	ns
ιPZH, ιPZL	Time from \overline{G} to Q_A thru Q'_H	C _L =150p	ρF	4.5V	20.0	49.0	61.0	74.0	115
		C _L =50pF		6.0V	13.0	30.0	37.0	45.0	1
		CL=150p	ρF	6.0V	17.0	42.0	53.0	63.0	
	Marian Order & Disable			2.0V	75.0	175.0	220.0	265.0	
t _{PHZ} ,t _{PLZ}	Maximum Output Disable Time from \overline{G} to Q_A thru Q'_H	$R_L=1k\Omega$, C∟=50pF	4.5V	15.0	35.0	44.0	53.0	ns
				6.0V	13.0	30.0	37.0	45.0	

Continued on the following page ...

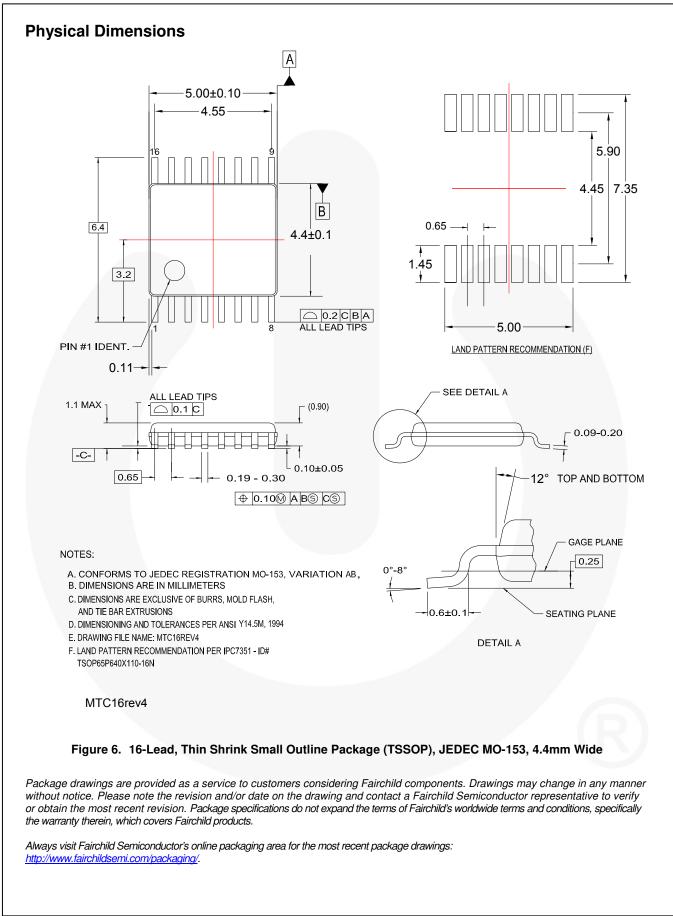

Electrical Characteristics

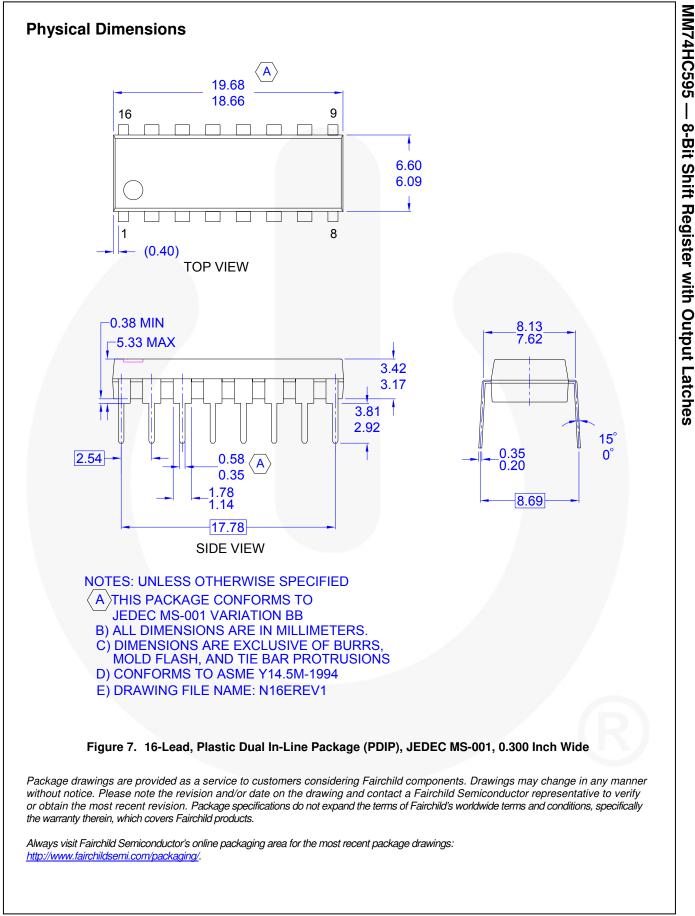

 V_{CC} = 2.0–6.0V, C_L = 50pF, t_r = t_f =6ns unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc}	T _A =2	25°C	T _A =-40 to 85°C	T _A =-55 to 125°C	Units	
				Тур.	Gi	uaranteed I	Limits		
			2.0V		100	125	150		
ts	Minimum Setup Time from SER to SCK	$R_L=1k\Omega, C_L=50pF$	4.5V		20	25	30	ns	
			6.0V		17	21	25		
			2.0V		50	63	75		
t _R	Minimum Removal Time from SCLR to SCK		4.5V		10	13	15	ns	
			6.0V		9	11	13		
			2.0V		100	125	150		
ts	Minimum Setup Time from SCK to RCK		4.5V		20	25	30	ns	
			6.0V		17	21	26		
			2.0V		5	5	5		
t _H	Minimum Hold Time from SER to SCK		4.5V		5	5	5	ns	
			6.0V		5	5	5		
	Minimum Dulas Mishharf		2.0V	30	80	100	120		
t _{vv}	Minimum Pulse Width of SCK or SCLR		4.5V	9	16	20	24	ns	
			6.0V	8	14	18	22		
			2.0V		1000	1000	1000	ns	
t _R ,t _F	Maximum Input Rise and Fall Time, Clock		4.5V		500	500	500		
			6.0V		400	400	400		
			2.0V	25	60	75	90		
	Maximum Output Rise and Fall Time Q_A - Q_H		4.5V	7	12	15	18	ns	
			6.0V	6	10	13	15		
t _{THL} ,t _{TLH}			2.0V		75	95	110		
	Maximum Output Rise and Fall Time Q' _H		4.5V		15	19	22	ns	
			6.0V		13	16	19		
0	Power Dissipation	G=V _{CC}		90				ъĘ	
C _{PD}	Capacitance, Outputs Enabled ⁽⁵⁾	G=GND		150				pF	
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF	
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF	

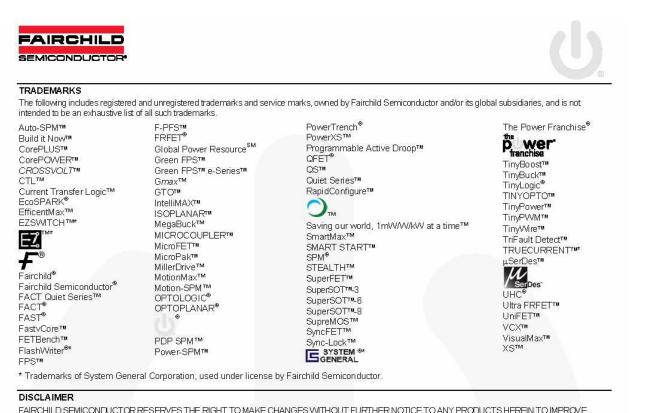

Note:

5. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.





MM74HC595 — 8-Bit Shift Register with Output Latches



MM74HC595 — 8-Bit Shift Register with Output Latches

13

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 140

MM74HC595

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC