imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

September 1983 Revised May 2005 MM74HC688 8-Bit Magnitude Comparator (Equality Detector)

MM74HC688 8-Bit Magnitude Comparator (Equality Detector)

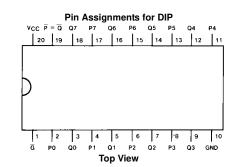
General Description

FAIRCHILD

SEMICONDUCTOR

The MM74HC688 equality detector utilizes advanced silicon-gate CMOS technology to compare bit for bit two 8-bit words and indicates whether or not they are equal. The $\overline{P=Q}$ output indicates equality when it is LOW. A single active low enable is provided to facilitate cascading of several packages and enable comparison of words greater than 8 bits.

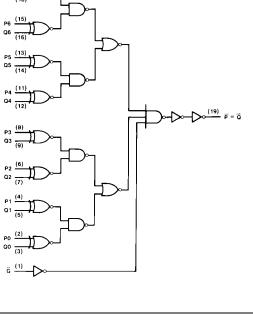
This device is useful in memory block decoding applications, where memory block enable signals must be generated from computer address information. The comparator's output can drive 10 low power Schottky equivalent loads. This comparator is functionally and pin compatible to the 74LS688. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.


Features

- Typical propagation delay: 20 ns
- Wide power supply range: 2–6V
- Low quiescent current: 80 μA (74 Series)
- Large output current: 4 mA (74 Series)
- Same as HC521

Ordering Code:

Order Number	Package Number	Package Description			
MM74HC688WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
MM74HC688SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HC688MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HC688N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					


Connection Diagram

Truth Table

Ing	Inputs				
Data	Data Enable				
P,Q	G	$\overline{\mathbf{P}} = \overline{\mathbf{Q}}$			
P = Q	L	L			
P > Q	L	н			
P < Q	L	н			
Х	н	н			

Logic Diagram

MM74HC688

Absolute Maximum Ratings(Note 1) (Note 2)

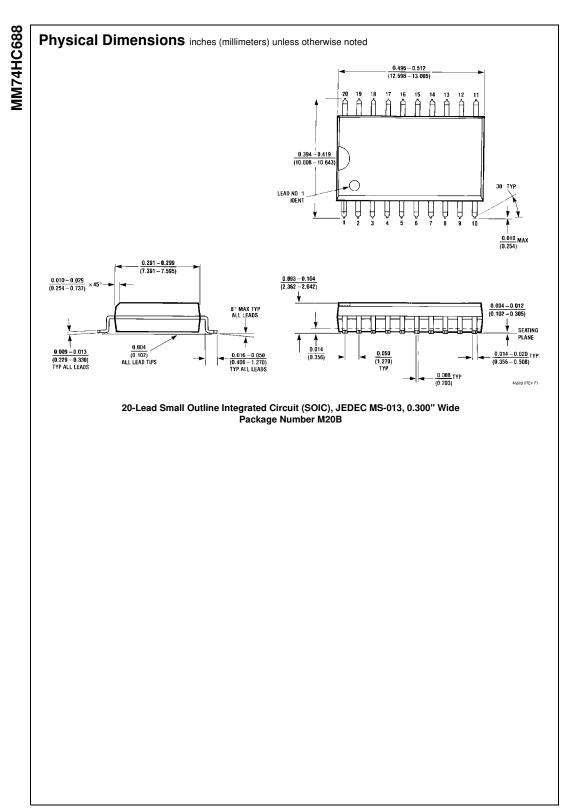
Recommended Operating Conditions

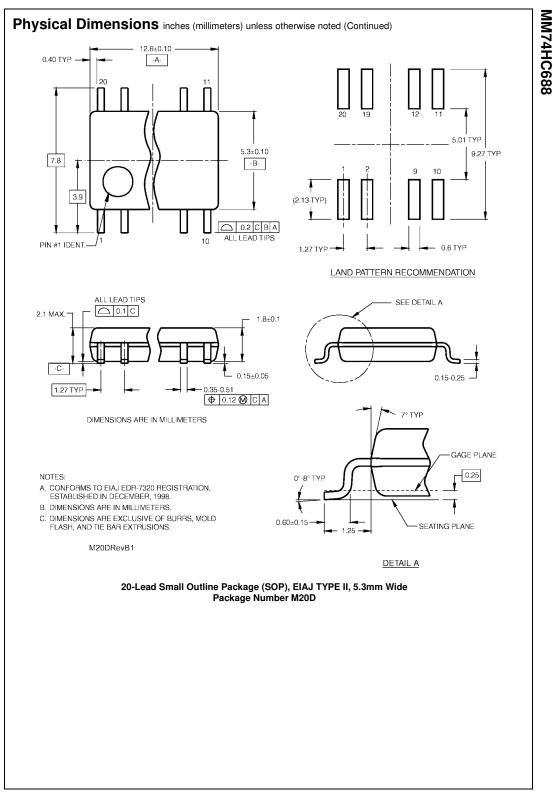
Supply Voltage (V _{CC})	-0.5 to +7.0V		Min	Max	Units	
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V	Supply Voltage (V _{CC})	2	6	V	
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V		0	V _{CC}	V	
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	(V _{IN} , V _{OUT})				
DC Output Current, per pin (I _{OUT})	±25 mA	Operating Temperature Range (T _A)	-40	+85	°C	
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA	Input Rise or Fall Times				
Storage Temperature Range (T _{STG})	-65°C to +150°C	$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns	
Power Dissipation (P _D)		$V_{CC} = 4.5V$		500	ns	
(Note 3)	600 mW	$V_{CC} = 6.0V$		400	ns	
S.O. Package only	500 mW	Note 1: Absolute Maximum Ratings are those	e values l	beyond whi	ch dam-	
Lead Temperature (TL)		age to the device may occur.				
(Soldering 10 seconds)	260°C	Note 2: Unless otherwise specified all voltages are referenced to ground.				
	200 0	Note 3: Power Dissipation temperature derati 12 mW/°C from 65°C to 85°C.	ng — pla	istic "N" pa	ckage: -	

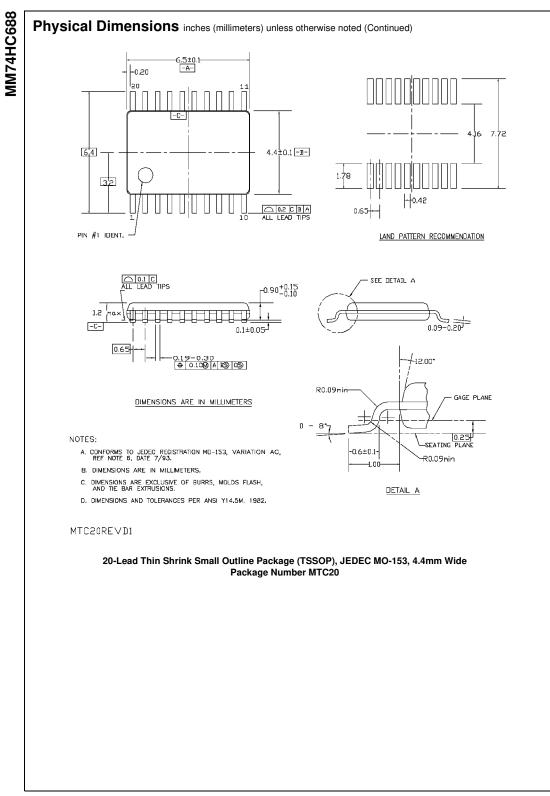
DC Electrical Characteristics (Note 4)

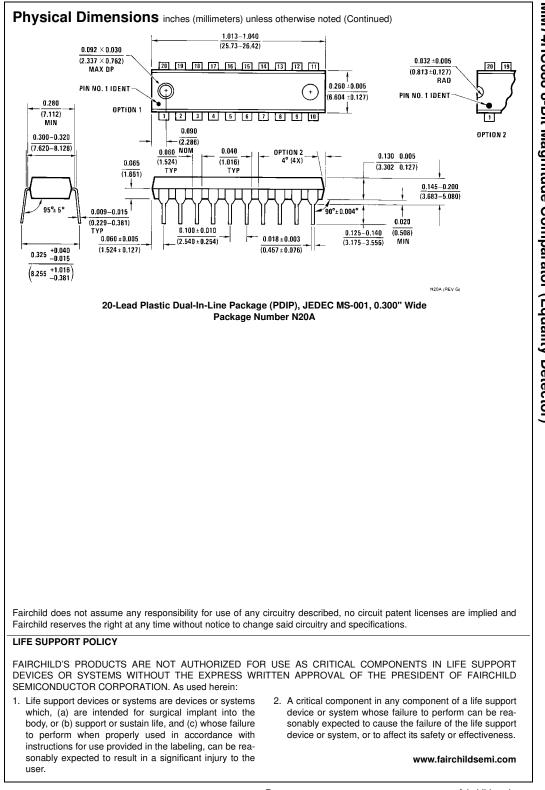
Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A=-55$ to $125^\circ C$	Units
			•cc	Тур		Guaranteed L	imits	onits
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						

Note 4: For a power supply of 5V $\pm 10^{\circ}$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


	ectrical Characteristics $T_A = 25^{\circ}C, C_L = 15 \text{ pF}, t_r = t_f = 6 \text{ ns}$	5			
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, any P or Q to Output		21	30	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Enable to any Output		14	20	ns


AC Electrical Characteristics


 v_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A=-55$ to $125^\circ C$	Units
				Typ Guaranteed Limits			imits	Units
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	60	175	220	263	ns
	Delay, P or Q to		4.5V	22	35	44	53	ns
	Output		6.0V	19	30	38	45	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	45	120	150	180	ns
	Delay, Enable to		4.5V	15	24	30	36	ns
	Output		6.0V	13	20	25	30	ns
t _{THL} , t _{TLH}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation			45				pF
	Capacitance (Note 5)							
CIN	Maximum Input			5	10	10	10	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC688 8-Bit Magnitude Comparator (Equality Detector)