imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Technical Data

Integrated Quad Half H-Bridge with Power Supply, Embedded MCU, and LIN Serial Communication

The 908E625 is an integrated single package solution including a high performance HC08 microcontroller with a SMARTMOS analog control IC. The HC08 includes flash memory, a timer, enhanced serial communications interface (ESCI), an analog-to-digital converter (ADC), internal serial peripheral interface (SPI), and an internal clock generator (ICG) module. The analog control die provides fully protected H-Bridge/high side outputs, voltage regulator, autonomous watchdog with cyclic wake-up, and local interconnect network (LIN) physical layer.

The single package solution, together with LIN, provides optimal application performance adjustments and space saving PCB design. It is well-suited for the control of automotive mirror, door lock, and light-leveling applications.

Features

- High-performance M68HC908EY16 core
- 16 KB of on-chip flash memory & 512 B of RAM
- Internal clock generation module
- Two 16-bit, two-channel timers
- 10-bit ADC
- LIN physical layer
- · Autonomous watchdog with cyclic wake-up
- Three two-pin Hall effect sensor input ports
- One analog input with switchable current source •
- Four low R_{DS(ON)} half-bridge outputs
- One low R_{DS(ON)} high side output
- 13 micro controller I/Os

908E625

Document Number: MM908E625 Rev 10, 04/2012

√RoHS

908E625

H-BRIDGE POWER SUPPLY WITH EMBEDDED MCU AND LIN

ORDERING INFORMATION				
Device (Add an R2 suffix for Tape and reel orders)	Temperature Range (T)	Package		
MM908E625ACPEK	-40 to 85 °C	54 SOICW EP		

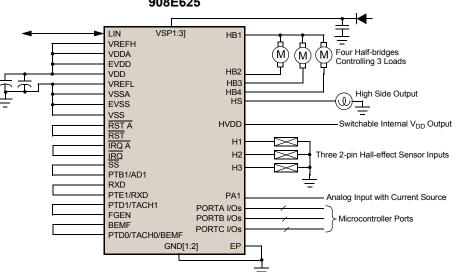
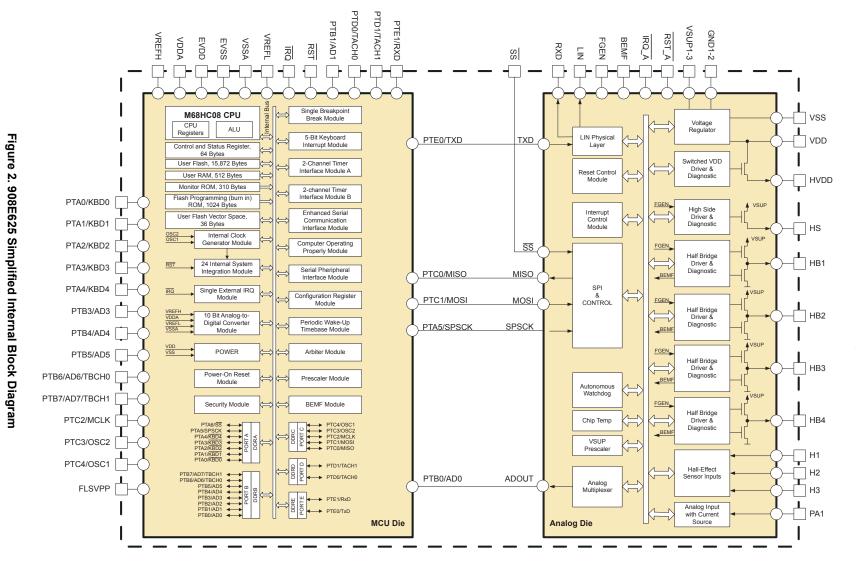
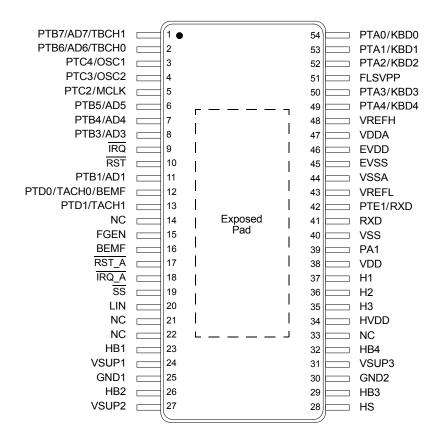
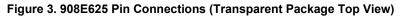



Figure 1. 908E625 Simplified Application Diagram

* This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2012. All rights reserved.


freescale


Ν

908E625

PIN CONNECTIONS

Table 1. 908E625 Pin Definitions

A functional description of each pin can be found in the Functional Pin Description section beginning on page 14.

Pin Function	Pin	Pin Name	Formal Name	Definition
MCU	1	PTB7/AD7/TBCH1	Port B I/Os	These pins are special function, bi-directional I/O port pins that
	2	PTB6/AD6/TBCH0		are shared with other functional modules in the MCU.
	6	PTB5/AD5		
	7	PTB4/AD4		
	8	PTB3/AD3		
	11	PTB1/AD1		
MCU	3	PTC4/OSC1	Port C I/Os	These pins are special function, bi-directional I/O port pins that
	4	PTC3/OSC2		are shared with other functional modules in the MCU.
	5	PTC2/MCLK		
MCU	9	IRQ	External Interrupt Input	This pin is an asynchronous external interrupt input pin.
MCU	10	RST	External Reset	This pin is bi-directional, allowing a reset of the entire system.
				It is driven low when any internal reset source is asserted.
MCU	12	PTD0/TACH0/BEMF	Port D I/Os	These pins are special function, bi-directional I/O port pins that
	13	PTD1/TACH1		are shared with other functional modules in the MCU.
-	14, 21, 22, 33	NC	No Connect	Not connected.

Table 1. 908E625 Pin Definitions (continued)

A functional description of each pin can be found in the Functional Pin Description section beginning on page 14.

Pin Function	Pin	Pin Name	Formal Name	Definition
MCU	42	PTE1/RXD	Port E I/O	This pin is a special function, bi-directional I/O port pin that can is shared with other functional modules in the MCU.
MCU	43 48	VREFL VREFH	ADC References	These pins are the reference voltage pins for the analog-to- digital converter (ADC).
MCU	44 47	VSSA VDDA	ADC Supply pins	These pins are the power supply pins for the analog-to-digital converter.
MCU	45 46	EVSS EVDD	MCU Power Supply Pins	These pins are the ground and power supply pins, respectively. The MCU operates from a single power supply.
MCU	49 50 52 53 54	PTA4/KBD4 PTA3/KBD3 PTA2/KBD2 PTA1/KBD1 PTA0/KBD0	Port A I/Os	These pins are special function, bi-directional I/O port pins that are shared with other functional modules in the MCU.
MCU	51	FLSVPP	Test Pin	For test purposes only. Do not connect in the application.
Analog	15	FGEN	Current Limitation Frequency Input	This is the input pin for the half-bridge current limitation and the high side inrush current limiter PWM frequency.
Analog	16	BEMF	Back Electromagnetic Force Output	This pin gives the user information about back electromagnetic force (BEMF).
Analog	17	RST_A	Internal Reset	This pin is the bi-directional reset pin of the analog die.
Analog	18	IRQ_A	Internal Interrupt Output	This pin is the interrupt output pin of the analog die indicating errors or wake-up events.
Analog	19	SS	Slave Select	This pin is the SPI slave select pin for the analog chip.
Analog	20	LIN	LIN Bus	This pin represents the single wire bus transmitter and receiver.
Analog	23 26 29 32	HB1 HB2 HB3 HB4	Half-bridge Outputs	This device includes power MOSFETs configured as four half- bridge driver outputs. These outputs may be configured for step motor drivers, DC motor drivers, or as high side and low side switches.
Analog	24 27 31	VSUP1 VSUP2 VSUP3	Power Supply Pins	These pins are device power supply pins.
Analog	25 30	GND1 GND2	Power Ground Pins	These pins are device power ground connections.
Analog	28	HS	High-Side Output	This output pin is a low $R_{DS(ON)}$ high side switch.
Analog	34	HVDD	Switchable V _{DD} Output	This pin is a switchable V_{DD} output for driving resistive loads requiring a regulated 5.0 V supply; e.g., 3-pin Hall-effect sensors.
Analog	35 36 37	H3 H2 H1	Hall-effect Sensor Inputs	These pins provide inputs for Hall-effect sensors and switches.
Analog	38	VDD	Voltage Regulator Output	The +5.0 V voltage regulator output pin is intended to supply the embedded microcontroller.
Analog	39	PA1	Analog Input	This pin is an analog input port with selectable source values.
Analog	40	VSS	Voltage Regulator Ground	Ground pin for the connection of all non-power ground connections (microcontroller and sensors).
Analog	41	RXD	LIN Transceiver Output	This pin is the output of LIN transceiver.
-	EP	Exposed Pad	Exposed Pad	The exposed pad pin on the bottom side of the package conducts heat from the chip to the PCB board.

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 2. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
ELECTRICAL RATINGS	1 1	I	
Supply Voltage Analog Chip Supply Voltage under Normal Operation, Steady State	V _{SUP(SS)}	-0.3 to 28	V
Analog Chip Supply Voltage under Transient Conditions ⁽¹⁾ Microcontroller Chip Supply Voltage	V _{SUP(PK)} V _{DD}	-0.3 to 40 -0.3 to 6.0	
Input Pin Voltage Analog Chip Microcontroller Chip	V _{IN(ANALOG)} V _{IN(MCU)}	-0.3 to 5.5 V _{SS} -0.3 to V _{DD} +0.3	V
Maximum Microcontroller Current per Pin All Pins Except VDD, VSS, PTA0:PTA6, PTC0:PTC1 Pins PTA0:PTA6, PTC0:PTC1	I _{PIN(1)} I _{PIN(2)}	±15 ±25	mA
Maximum Microcontroller V _{SS} Output Current	I _{MVSS}	100	mA
Maximum Microcontroller V _{DD} Input Current	I _{MVDD}	100	mA
LIN Supply Voltage Normal Operation (Steady-State) Transient Conditions ⁽¹⁾	V _{BUS(SS)} V _{BUS(DYNAMIC)}	-18 to 28 40	V
ESD Voltage Human Body Model (HBM) ⁽²⁾ Machine Model (MM) ⁽³⁾ Charge Device Model (CDM) ⁽⁴⁾	V _{ESD}	±3000 ±150 ±500	V

Storage Temperature	T _{STG}	-40 to 150	°C
Ambient Operating Temperature	T _A	-40 to 85	°C
Operating Case Temperature ⁽⁵⁾	Τ _C	-40 to 85	°C
Operating Junction Temperature ⁽⁶⁾	TJ	-40 to 125	°C
Peak Package Reflow Temperature During Reflow ⁽⁷⁾⁽⁸⁾	T _{PPRT}	Note 8	°C

Notes

- 1. Transient capability for pulses with a time of t < 0.5 sec.
- 2. ESD voltage testing is performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω)
- 3. ESD voltage testing is performed in accordance with the Machine Model (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω)
- 4. ESD voltage testing is performed in accordance with Charge Device Model, robotic (C_{ZAP} = 4.0 pF).
- 5. The limiting factor is junction temperature, taking into account the power dissipation, thermal resistance, and heat sinking.
- 6. The temperature of analog and MCU die is strongly linked via the package, but can differ in dynamic load conditions, usually because of higher power dissipation on the analog die. The analog die temperature must not exceed 150 °C under these conditions.
- 7. Pin soldering temperature is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.
- Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

STATIC ELECTRICAL CHARACTERISTICS

Table 3. Static Electrical Characteristics

All characteristics are for the analog chip only. Refer to the 68HC908EY16 specification for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
SUPPLY VOLTAGE					
Nominal Operating Voltage	V _{SUP}	8.0	-	18	V
SUPPLY CURRENT					
Normal Mode V _{SUP} = 12 V, Power Die ON (PSON=1), MCU Operating Using Internal Oscillator at 32 MHz (8.0 MHz Bus Frequency), SPI, ESCI, ADC Enabled	I _{RUN}	_	20	-	mA μA
STOP Mode ⁽⁹⁾ V _{SUP} = 12 V, Cyclic Wake-up Disabled	I _{STOP}	-	-	60	
DIGITAL INTERFACE RATINGS (ANALOG DIE)					
Output Pins RST_A , IRQ_A Low State Output Voltage (I _{OUT} = -1.5 mA) High State Output Voltage (I _{OUT} = 1.0 μA)	V _{OL} V _{OH}	- 3.85		0.4	v
Output Pins BEMF, RXD Low State Output Voltage (I _{OUT} = -1.5 mA) High State Output Voltage (I _{OUT} = 1.5 mA)	V _{OL} V _{OH}	- 3.85		0.4	V
Output Pin RXD–Capacitance ⁽¹⁰⁾	C _{IN}	-	4.0	-	pF
Input Pins RST_A, FGEN, SS Input Logic Low Voltage Input Logic High Voltage	V _{IL} V _{IH}	- 3.5		1.5 -	V
Input Pins RST_A, FGEN, SS-Capacitance (10)	C _{IN}	-	4.0	-	pF
Pins RST_A, IRQ_A–Pull-up Resistor	R _{PULLUP1}	_	10	-	kΩ
Pin SS-Pull-up Resistor	R _{PULLUP2}	_	60	-	kΩ
Pins FGEN, MOSI, SPSCK–Pull-down Resistor	R _{PULLDOWN}	-	60	-	kΩ
Pin TXD-Pull-up Current Source	I _{PULLUP}	_	35	-	μA

Notes

9. STOP mode current will increase if V_{SUP} exceeds 15 V.

10. This parameter is guaranteed by process monitoring but is not production tested.

Table 3. Static Electrical Characteristics (continued)

All characteristics are for the analog chip only. Refer to the 68HC908EY16 specification for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
SYSTEM RESETS AND INTERRUPTS					1
High Voltage Reset					V
Threshold	V _{HVRON}	27	30	33	
Hysteresis	V _{HVRH}	-	1.5	-	
Low Voltage Reset					
Threshold	V _{LVRON}	3.6	4.0	4.5	V
Hysteresis	V _{LVRH}	-	100	-	mV
High Voltage Interrupt					V
Threshold	V _{HVION}	17.5	21	23	
Hysteresis	V _{HVIH}	-	1.0	-	
Low Voltage Interrupt					V
Threshold	V _{LVION}	6.5	-	8.0	
Hysteresis	V _{LVIH}	-	0.4	-	
High Temperature Reset ⁽¹¹⁾					°C
Threshold	T _{RON}	_	170	-	
Hysteresis	T _{RH}	5.0	-	-	
High Temperature Interrupt ⁽¹²⁾					°C
Threshold	T _{ION}	_	160	-	
Hysteresis	Т _{ІН}	5.0	-	-	
VOLTAGE REGULATOR					1
Normal Mode Output Voltage	V _{DDRUN}				V
I _{OUT} = 60 mA, 6.0 V < V _{SUP} < 18 V		4.75	5.0	5.25	
Load Regulation	V _{LR}				mV
I _{OUT} = 80 mA, V _{SUP} = 9.0 V, T _J = 125°C		-	-	100	
Stop Mode Output Voltage (Maximum Output Current 100 µA)	V _{DDSTOP}	4.45	4.7	5.0	V
LIN PHYSICAL LAYER					1
Output Low Level	V _{LIN-LOW}				V
TXD LOW, 500 Ω Pull-up to V_{SUP}		-	-	1.4	
Output High Level	V _{LIN-HIGH}			ł	V
TXD HIGH, I _{OUT} = 1.0 μA		V _{SUP} -1.0	-	-	
Pullup Resistor to V _{SUP}	R _{SLAVE}	20	30	60	kΩ
Leakage Current to GND	I _{BUS_PAS_rec}				μA
Recessive State (-0.5 V < V _{LIN} < V _{SUP})	200	0.0	_	20	
Leakage Current to GND (V _{SUP} Disconnected)					μA
Including Internal Pull-up Resistor, V _{LIN} @ -18 V	IBUS_NO_GND	_	-600	-	
Including Internal Pull-up Resistor, V _{LIN} @ +18 V	I _{BUS}		25		

Notes

11. This parameter is guaranteed by process monitoring but is not production tested.

12. High Temperature Interrupt (HTI) threshold is linked to High Temperature Reset (HTR) threshold (HTR = HTI + 10°C).

Table 3. Static Electrical Characteristics (continued)

All characteristics are for the analog chip only. Refer to the 68HC908EY16 specification for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
LIN Receiver					V
Recessive	V _{IH}	0.6 V _{LIN}	_	V _{SUP}	
Dominant	V _{IL}	0.0	-	0.4 V _{LIN}	
Threshold	V _{ITH}	-	V _{SUP} /2	_	
Input Hysteresis	V _{IHY}	0.01 V _{SUP}	-	0.1 V _{SUP}	
LIN Wake-up Threshold	V _{WTH}	-	V _{SUP} /2	-	V
HIGH SIDE OUTPUT (HS)					
Switch ON Resistance @ T_J = 25 °C with I_{LOAD} = 1.0 A	R _{DS(ON)HS}	-	600	700	mΩ
High Side Over-current Shutdown	IHSOC	3.9	-	7.0	А
IALF-BRIDGE OUTPUTS (HB1:HB4)		L			
Switch ON Resistance @ T_J = 25 °C with I_{LOAD} = 1.0 A					mΩ
High Side	R _{DS(ON)HB_HS}	-	425	500	
Low Side	R _{DS(ON)HB_LS}	-	400	500	
High Side Over-current Shutdown	I _{HBHSOC}	4.0	_	7.5	Α
Low Side Over-current Shutdown	I _{HBLSOC}	2.8	_	7.5	А
Low Side Current Limitation @ $T_J = 25^{\circ}C$					mA
Current Limit 1 (CLS2 = 0, CLS1 = 1, CLS0 = 1)	I _{CL1}	-	55	-	
Current Limit 2 (CLS2 = 1, CLS1 = 0, CLS0 = 0)	I _{CL2}	210	260	315	
Current Limit 3 (CLS2 = 1, CLS1 = 0, CLS0 = 1)	I _{CL3}	300	370	440	
Current Limit 4 (CLS2 = 1, CLS1 = 1, CLS0 = 0)	I _{CL4}	450	550	650	
Current Limit 5 (CLS2 = 1, CLS1 = 1, CLS0 = 1)	I _{CL5}	600	740	880	
Half-bridge Output High Threshold for BEMF Detection	V _{BEMFH}	-	-30	0	V
Half-bridge Output Low Threshold for BEMF Detection	V _{BEMFL}	_	-60	-5.0	mV
Hysteresis for BEMF Detection	V _{BEMFHY}	_	30	-	mV
Low Side Current-to-Voltage Ratio (V _{ADOUT} [V]/I _{HB} [A])					V/A
CSA = 1	RATIO _H	7.0	12.0	14.0	
CSA = 0	RATIOL	1.0	2.0	3.0	
WITCHABLE V _{DD} OUTPUT (PH.D.)	·				
Over-current Shutdown Threshold	I _{HVDDOCT}	24	30	40	mA
/ _{SUP} DOWN-SCALER					
Voltage Ratio (RATIO _{VSUP} = V _{SUP} /V _{ADOUT})	RATIO _{VSUP}	4.8	5.1	5.35	-
NTERNAL DIE TEMPERATURE SENSOR	•				
Voltage/Temperature Slope	S _{TTOV}	_	19	_	mV/°C
Output Voltage @ 25 °C	V _{T25}	1.7	2.1	2.5	V
HALL-EFFECT SENSOR INPUTS (H1:H3)	· ·				
Output Voltage					V
V _{SUP} < 16.2 V	V _{HALL1}	-	V _{SUP} -1.2	-	
V _{SUP} > 16.2 V	V _{HALL2}	-	_	15	

Table 3. Static Electrical Characteristics (continued)

All characteristics are for the analog chip only. Refer to the 68HC908EY16 specification for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Sense Current					mA
Threshold	I _{HSCT}	6.9	8.8	11	
Hysteresis	I _{HSCH}	-	0.88	-	
Output Current Limitation	I _{HL}	-	90	-	mA
Over-current Warning HP_OCF Flag Threshold]	V _{HPOCT}	-	3.0	-	V
Dropout Voltage @ I _{LOAD} = 15 mA	V _{HPDO}	-	0.5	-	V
ANALOG INPUT (PA1)	ł	1	1	1	
Current Source PA1					μA
CSSE[1 - 1] CSSE[0 - 1]	CSPA1	570	670	770	

CSSEL1 = 1, CSSEL0 = 1	I _{CSPA1}	570	670	770	
Selectable Scaling Factor Current Source PA1 (I(N) = I _{CSPA1} * N)					%
CSSEL1 = 0, CSSEL0 = 0	N _{CSPA1-0}	8.5	10	11.5	
CSSEL1 = 0, CSSEL0 = 1	N _{CSPA1-1}	28.5	30	31.5	
CSSEL1 = 1, CSSEL0 = 0	N _{CSPA1-2}	58.5	60	61.5	

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 4. Dynamic Electrical Characteristics

All characteristics are for the analog chip only. Please refer to the specification for 68HC908EY16 for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LIN PHYSICAL LAYER			1	ı	1
Propagation Delay ⁽¹³⁾ , ⁽¹⁴⁾					μs
TXD Low to LIN Low	t _{TXD-LIN-low}	-	-	6.0	
TXD High to LIN High	^t TXD-LIN-high	-	-	6.0	
LIN Low to RXD Low	t _{LIN-RXD-low}	-	4.0	8.0	
LIN High to RXD High	t _{LIN-RXD-}	-	4.0	8.0	
TXD Symmetry	high +	-2.0	-	2.0	
RXD Symmetry	t _{TXD-SYM}	-2.0	-	2.0	
	t _{RXD-SYM}				
Output Falling Edge Slew Rate ⁽¹³⁾ , ⁽¹⁵⁾	SR _F				V/μs
80% to 20%		-1.0	-2.0	-3.0	
Output Rising Edge Slew Rate ⁽¹³⁾ , ⁽¹⁵⁾	SR _R				V/µs
20% to 80%, R _{BUS} > 1.0 k Ω , C _{BUS} < 10 nF		1.0	2.0	3.0	
LIN Rise/Fall Slew Rate Symmetry ⁽¹³⁾ , ⁽¹⁵⁾	SR _S	-2.0	_	2.0	μs
HALL-EFFECT SENSOR INPUTS (H1:H3)			1	1	1
Propagation Delay	t _{HPPD}	-	1.0	-	μs
AUTONOMOUS WATCHDOG (AWD)					
AWD Oscillator Period	t _{OSC}	-	40	-	μs
AWD Period Low = 512 t _{OSC}	t _{AWDPH}				ms
T _J < 25 °C		16	27	34	
$T_J \ge 25 \ ^\circ C$		16	22	28	
AWD Period High = 256 t _{OSC}	t _{AWDPL}				ms
T _J < 25 °C		8.0	13.5	17	
$T_{J} \ge 25 \ ^{\circ}C$		8.0	11	14	
AWD Cyclic Wake-up On Time	t _{AWDHPON}	_	90	-	μs

Notes

13. All LIN characteristics are for initial LIN slew rate selection (20 kBaud) (SRS0:SRS1= 00).

14. See Figure 2.

15. See Figure 3.

MICROCONTROLLER PARAMETRICS

Table 5. Microcontroller Description

For a detailed microcontroller description, refer to the MC68HC908EY16 data sheet.

Module	Description
Core	High Performance HC08 Core with a Maximum Internal Bus Frequency of 8.0 MHz
Timer	Two 16-Bit Timers with Two Channels (TIM A and TIM B)
Flash	16 K Bytes
RAM	512 Bytes
ADC	10-Bit Analog-to-Digital Converter
SPI	SPI Module
ESCI	Standard Serial Communication Interface (SCI) Module Bit-Time Measurement Arbitration Prescaler with Fine Baud Rate Adjustment
ICG	Internal Clock Generation Module (25% Accuracy with Trim Capability to 2%)
BEMF Counter	Special Counter for SMARTMOS™ BEMF Output

TIMING DIAGRAMS

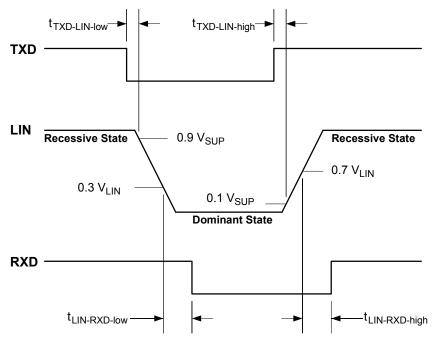
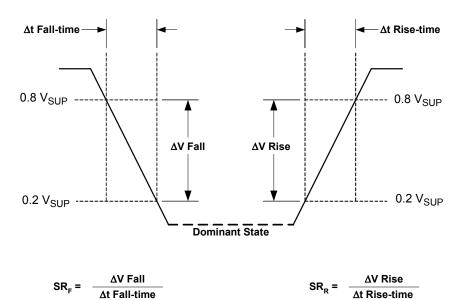



Figure 4. LIN Timing Description

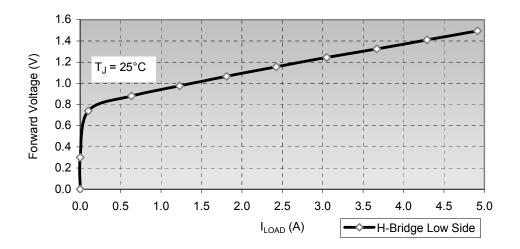


Figure 6. Free Wheel Diode Forward Voltage vs. I_{LOAD}

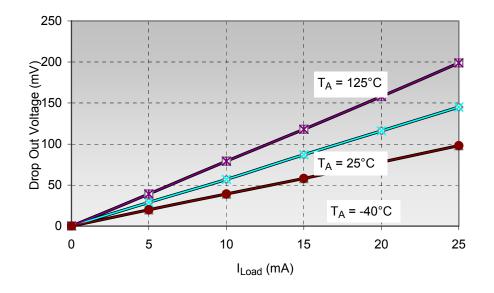


Figure 7. Dropout Voltage on HVDD vs. ILOAD

FUNCTIONAL DESCRIPTION

INTRODUCTION

The 908E625 device was designed and developed as a highly integrated and cost effective solution for automotive and industrial applications. For automotive body electronics, the 908E625 is well suited to perform complete mirror, door lock, and light-levelling control all via a three-wire LIN bus.

This device combines an standard HC08 MCU core (68HC908EY16) with flash memory together with a *SMARTMOS* IC chip. The *SMARTMO*[™] IC chip combines power and control in one chip. Power switches are provided on the *SMARTMOS* IC configured as half-bridge outputs with one high side switch. Other ports are also provided; they include Hall-effect sensor input ports, analog input ports, and a selectable HVDD pin. An internal voltage regulator is provided on the *SMARTMOS* IC chip, which provides power to the MCU chip.

Also included in this device is a LIN physical layer, which communicates using a single wire. This enables the device to be compatible with three-wire bus systems, where one wire is used for communication, one for battery, and the third for ground.

FUNCTIONAL PIN DESCRIPTION

See <u>Figure 1</u> for a graphic representation of the various pins referred to in the following paragraphs. Also, see the pin diagram on <u>Figure 3</u> for a depiction of the pin locations on the package.

PORT A I/O PINS (PTA0:4)

These pins are special-function, bidirectional I/O port pins that are shared with other functional modules in the MCU. PTA0:PTA4 are shared with the keyboard interrupt pins, KBD0:KBD4.

The PTA5/SPSCK pin is not accessible in this device and is internally connected to the SPI clock pin of the analog die. The PTA6/SS pin is likewise not accessible.

For details refer to the 68HC908EY16 datasheet.

PORT B I/O PINS (PTB1, PTB3:7)

These pins are special function, bi-directional I/O port pins that are shared with other functional modules in the MCU. All pins are shared with the ADC module. The PTB6:PTB7 pins are also shared with the Timer B module.

PTB0/AD0 is internally connected to the ADOUT pin of the analog die, allowing diagnostic measurements to be calculated; e.g., current recopy, V_{SUP} , etc. The PTB2/AD2 pin is not accessible in this device.

For details refer to the 68HC908EY16 datasheet.

PORT C I/O PINS (PTC2:4)

These pins are special function, bi-directional I/O port pins that are shared with other functional modules in the MCU. For example, PTC2:PTC4 are shared with the ICG module.

PTC0/MISO and PTC1/MOSI are not accessible in this device and are internally connected to the MISO and MOSI SPI pins of the analog die.

For details refer to the 68HC908EY16 datasheet.

CURRENT LIMITATION FREQUENCY INPUT PIN (FGEN)

PORT D I/O PINS (PTD0:1)

PTD1/TACH1 and PTD0/TACH0/BEMF are special function, bi-directional I/O port pins that can also be programmed to be timer pins.

In step motor applications, the PTD0 pin should be connected to the BEMF output of the analog die, to evaluate the BEMF signal with a special BEMF module of the MCU.

PTD1 pin is recommended for use as an output pin for generating the FGEN signal (PWM signal), if required by the application.

PORT E I/O PIN (PTE1)

PTE1/RXD and PTE0/TXD are special function, bidirectional I/O port pins that can also be programmed to be enhanced serial communication.

PTE0/TXD is internally connected to the TXD pin of the analog die. The connection for the receiver must be done externally.

EXTERNAL INTERRUPT PIN (IRQ)

The IRQ pin is an asynchronous external interrupt pin. This pin contains an internal pull-up resistor that is always activated, even when the IRQ pin is pulled LOW.

For details refer to the 68HC908EY16 datasheet.

EXTERNAL RESET PIN (RST)

A Logic [0] on the $\overline{\text{RST}}$ pin forces the MCU to a known startup state. $\overline{\text{RST}}$ is bi-directional, allowing a reset of the entire system. It is driven LOW when any internal reset source is asserted.

This pin contains an internal pull-up resistor that is always activated, even when the reset pin is pulled LOW.

For details refer to the 68HC908EY16 datasheet.

Input pin for the half-bridge current limitation and the high side inrush current limiter PWM frequency. This input is not a

real PWM input pin; it should just supply the period of the PWM. The duty cycle will be generate automatically.

Important The recommended FGEN frequency should be in the range of 0.1 kHz to 20 kHz.

BACK ELECTROMAGNETIC FORCE OUTPUT PIN (BEMF)

This pin gives the user information about back electromagnetic force (BEMF). This feature is mainly used in step motor applications for detecting a stalled motor. In order to evaluate this signal the pin must be directly connected to pin PTD0/TACH0/BEMF.

RESET PIN (RST_A)

 $\overline{\text{RST}_A}$ is the bi-directional reset pin of the analog die. It is an open drain with pull-up resistor and must be connected to the $\overline{\text{RST}}$ pin of the MCU.

INTERRUPT PIN (IRQ_A)

IRQ_A is the interrupt output pin of the analog die indicating errors or wake-up events. It is an open drain with pull-up resistor and must be connected to the IRQ pin of the MCU.

SLAVE SELECT PIN (SS)

This pin is the SPI Slave Select pin for the analog chip. All other SPI connections are done internally. SS must be connected to PTB1 or any other logic I/O of the microcontroller.

LIN BUS PIN (LIN)

The LIN pin represents the single-wire bus transmitter and receiver. It is suited for automotive bus systems and is based on the LIN bus specification.

HALF-BRIDGE OUTPUT PINS (HB1:HB4)

The 908E625 device includes power MOSFETs configured as four half-bridge driver outputs. The HB1:HB4 outputs may be configured for step motor drivers, DC motor drivers, or as high side and low-side switches.

The HB1:HB4 outputs are short-circuit and overtemperature protected, and they feature current recopy, current limitation, and BEMF generation. Current limitation and recopy are done on the low side MOSFETs.

POWER SUPPLY PINS (VSUP1: VSUP3)

VSUP1:VSUP3 are device power supply pins. The nominal input voltage is designed for operation from 12 V systems. Owing to the low ON-resistance and current requirements of the half-bridge driver outputs and high side output driver, multiple VSUP pins are provided.

All VSUP pins must be connected to get full chip functionality.

POWER GROUND PINS (GND1 AND GND2)

GND1 and GND2 are device power ground connections. Owing to the low ON-resistance and current requirements of the half-bridge driver outputs and high side output driver, multiple pins are provided.

GND1 and GND2 pins must be connected to get full chip functionality.

HIGH SIDE OUTPUT PIN (HS)

The HS output pin is a low $R_{DS(ON)}$ high side switch. The switch is protected against over-temperature and overcurrent. The output is capable of limiting the inrush current with an automatic PWM generation using the FGEN module.

SWITCHABLE VDD OUTPUT PIN (HVDD)

The HVDD pin is a switchable V_{DD} output for driving resistive loads requiring a regulated 5.0 V supply; e.g., 3-pin Hall-effect sensors. The output is short-circuit protected.

HALL-EFFECT SENSOR INPUT PINS (H1:H3)

The Hall-effect sensor input pins H1:H3 provide inputs for Hall-effect sensors and switches.

+5.0 V VOLTAGE REGULATOR OUTPUT PIN (VDD)

The VDD pin is needed to place an external capacitor to stabilize the regulated output voltage. The VDD pin is intended to supply the embedded microcontroller.

Important The VDD pin should not be used to supply other loads; use the HVDD pin for this purpose. The VDD, EVDD, VDDA, and VREFH pins must be connected together.

ANALOG INPUT PIN (PA1)

This pin is an analog input port with selectable current source values.

VOLTAGE REGULATOR GROUND PIN (VSS)

The VSS pin is the ground pin for the connection of all nonpower ground connections (microcontroller and sensors).

Important VSS, EVSS, VSSA, and VREFL pins must be connected together.

LIN TRANSCEIVER OUTPUT PIN (RXD)

This pin is the output of LIN transceiver. The pin must be connected to the microcontroller's Enhanced Serial Communications Interface (ESCI) module (RXD pin).

ADC REFERENCE PINS (VREFL AND VREFH)

VREFL and VREFH are the reference voltage pins for the ADC. It is recommended that a high quality ceramic decoupling capacitor be placed between these pins.

Important VREFH is the high reference supply for the ADC and should be tied to the same potential as VDDA via separate traces. VREFL is the low reference supply for the

ADC and should be tied to the same potential as VSS via separate traces.

For details refer to the 68HC908EY16 datasheet.

ADC SUPPLY PINS (VDDA AND VSSA)

VDDA and VSSA are the power supply pins for the analogto-digital converter (ADC). It is recommended that a high quality ceramic decoupling capacitor be placed between these pins.

Important VDDA is the supply for the ADC and should be tied to the same potential as EVDD via separate traces. VSSA is the ground pin for the ADC and should be tied to the same potential as EVSS via separate traces.

For details refer to the 68HC908EY16 datasheet.

MCU POWER SUPPLY PINS (EVDD AND EVSS)

EVDD and EVSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU.

For details refer to the 68HC908EY16 datasheet.

TEST PIN (FLSVPP)

This pin is for test purposes only. This pin should be either left open (not connected) or connected to GND.

EXPOSED PAD PIN

The exposed pad pin on the bottom side of the package conducts heat from the chip to the PCB board. For thermal performance the pad must be soldered to the PCB board. It is recommended that the pad be connected to the ground potential.

OPERATIONAL MODES

INTERRUPTS

The 908E625 has seven different interrupt sources as described in the following paragraphs. The interrupts can be disabled or enabled via the SPI. After reset all interrupts are automatically disabled.

LOW VOLTAGE INTERRUPT

The low voltage interrupt (LVI) is related to the external supply voltage, V_{SUP} . If this voltage falls below the LVI threshold, it will set the LVI flag. If the low voltage interrupt is enabled, an interrupt will be initiated.

With LVI the H-Bridges (high side MOSFET only) and the high side driver are switched off. All other modules are not influenced by this interrupt.

During STOP mode the LVI circuitry is disabled.

HIGH VOLTAGE INTERRUPT

The high voltage interrupt (HVI) is related to the external supply voltage, V_{SUP} . If this voltage rises above the HVI threshold, it will set the HVI flag. If the high voltage interrupt is enabled, an interrupt will be initiated.

With HVI the H-Bridges (high side MOSFET only) and the high side driver are switched off. All other modules are not influenced by this interrupt.

During STOP mode the HVI circuitry is disabled.

HIGH TEMPERATURE INTERRUPT

The high temperature interrupt (HTI) is generated by the on-chip temperature sensors. If the chip temperature is above the HTI threshold, the HTI flag will be set. If the high temperature interrupt is enabled, an interrupt will be initiated.

During STOP mode the HTI circuitry is disabled.

AUTONOMOUS WATCHDOG INTERRUPT (AWD)

Refer to Autonomous Watchdog Autonomous Watchdog (AWD) on page 36.

LIN INTERRUPT

If the LINIE bit is set, a falling edge on the LIN pin will generate an interrupt. During STOP mode this interrupt will initiate a system wake-up.

HALL-EFFECT SENSOR INPUT PIN INTERRUPT

If the PHIE bit is set, the enabled Hall-effect sensor input pins H1:H3 can generate an interrupt if a current above the threshold is detected. During Stop mode this interrupt, combined with the cyclic wake-up feature of the AWD, can wake up the system. Refer to pin Hall-Effect Sensor Input Pins (H1:H3).

OVER-CURRENT INTERRUPT

If an over-current condition on a half-bridge occurs, the high side or the HVDD output is detected and the OCIE bit is set and an interrupt generated.

SYSTEM WAKE-UP

System wake-up can be initiated by any of four events:

- A falling edge on the LIN pin
- A wake-up signal from the AWD
- A Logic [1] at Hall-effect sensor input pin during cyclic check via AWD
- · An LVR condition

If one of these wake-up events occurs and the interrupt mask bit for this event is set, the interrupt will wake-up the microcontroller as well as the main voltage regulator (MREG) (Figure 8).

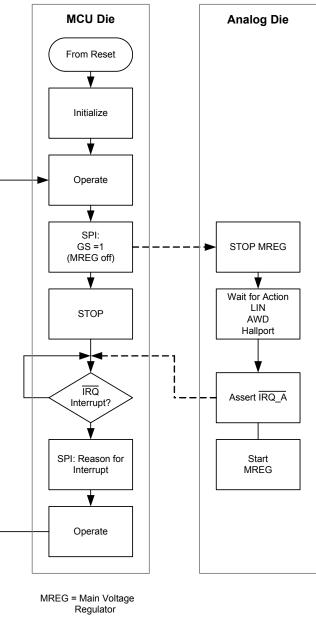
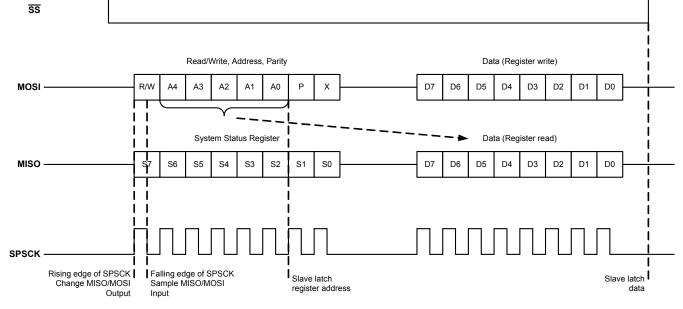


Figure 8. STOP Mode/Wake-up Procedure


SERIAL SPI INTERFACE

The SPI creates the communication link between the microcontroller and the 908E625. The interface consists of four pins. See Figure 9:

SS—Slave Select

- MOSI—Master-Out Slave-In
- MISO—Master-In Slave-Out
- SPSCK—Serial Clock

A complete data transfer via the SPI consists of 2 bytes. The master sends address and data, slave system status, and data of the selected address.

Figure 9. SPI Protocol

During the inactive phase of \overline{SS} , the new data transfer is prepared. The falling edge on the \overline{SS} line indicates the start of a new data transfer and puts MISO in the low-impedance mode. The first valid data are moved to MISO with the rising edge of SPSCK.

The MISO output changes data on a rising edge of SPSCK. The MOSI input is sampled on a falling edge of SPSCK. The data transfer is only valid if exactly 16 sample clock edges are present in the active phase of SS.

After a write operation, the transmitted data is latched into the register by the rising edge of \overline{SS} . Register read data is internally latched into the SPI at the time when the parity bit is transferred. \overline{SS} HIGH forces MISO to high impedance.

A4:A0

Contains the address of the desired register.

R/W

Contains information about a read or a write operation.

- If R/W = 1, the second byte of master contains no valid information, slave just transmits back register data.
- If R/W = 0, the master sends data to be written in the second byte, slave sends concurrently contents of selected register prior to write operation, write data is latched in the SMARTMOS register on rising edge of SS.

PARITY P

The parity bit is equal to 0 if the number of 1 bits is an even number contained within R/W, A4:A0. If the number of 1 bits is odd, P equals 1. For example, if R/W = 1, A4:A0 = 00001, then P equals 0.

The parity bit is only evaluated during a write operation.

BIT X

Not used.

MASTER DATA BYTE

Contains data to be written or no valid data during a read operation.

SLAVE STATUS BYTE

Contains the contents of the System Status Register (\$0c) independent of whether it is a write or read operation or which register was selected.

SLAVE DATA BYTE

Contains the contents of selected register. During a write operation it includes the register content prior to a write operation.

SPI REGISTER OVERVIEW

 Table 6 summarizes the SPI register addresses and the bit names of each register.

Table 6. List of Registers

Addr	Register Name	R/W	Bit								
Auui	Register Name	F (/ V V	7	6	5	4	3	2	1	0	
\$01	H-Bridge Output	R	HB4 H	HB4 L	нвз н	HB3 L	HB2 H	HB2 L	HB1 H	HB1_L	
	(HBOUT)	W		_	_			_	_		
\$02	H-Bridge Control	R	OFC_EN	CSA	0	0	0	CLS2	CLS1	CLS0	
	(HBCTL)	W	_								
\$03	System Control	R	PSON	SRS1	SRS0	0	0	0	0	0	
	(SYSCTL)	W								GS	
\$04	Interrupt Mask	R	0	HPIE	LINIE	HTIE	LVIE	HVIE	OCIE	0	
	(IMR)	W									
\$05	Interrupt Flag	R	0	HPF	LINF	HTF	LVF	HVF	OCF	0	
	(IFR)	W	-								
\$06	Reset Mask	R	TTEST	0	0	0	0	0	HVRE	HTRE	
<i>Q</i>	(RMR)	W									
\$07	Analog Multiplexer	R	0	0	0	0	SS3	SS2	SS1	SS0	
φu.	Configuration (ADMUX)	W									
¢00	Hall-Effect Sensor Input Pin Control	R	0	0	0	0	0				
\$08	(HACTL)	W						H3EN	H2EN	H1EN	
	Hall-Effect Sensor Input	R	0	0	0	0	0	H3F	H2F	H1F	
\$09	Pin Status (HASTAT)	W									
	AWD Control	R	0	0	0						
\$0a	(AWDCTL)	W		-	AWDRST	AWDRE	AWDIE	AWDCC	AWDF	AWDR	
	Power Output	R	0	0							
\$0b	(POUT)	W			CSSEL1	CSSEL0	CSEN1	CSEN0	HVDDON	HS_ON	
	System Status	R		LINCL	HVDD_OC		LVF	HVF		HTF	
\$0c	(SYSSTAT)	W	HP_OCF		F	HS_OCF			HB_OCF		

LOGIC COMMANDS AND REGISTERS

INTERRUPT FLAG REGISTER (IFR)

Bits	7	6	5	4	3	2	1	0
Read	0	HPF	LINF	HTF	IVE	HVF	OCF	0
Write	0	пег			LVF	IIVI		
Reset	0	0	0	0	0	0	0	0

Register Name and Address: IFR - \$05

Hall-Effect Sensor Input Pin Flag Bit (HPF)

This read/write flag is set depending on Run/Stop mode.

RUN Mode

An interrupt will be generated when a state change on any enabled Hall-effect sensor input pin is detected. Clear HPF by writing a Logic [1] to HPF. Reset clears the HPF bit. Writing a Logic [0] to HPF has no effect.

- 1 = State change on the hallflags detected
- 0 = No state change on the hallflags detected

STOP Mode

An interrupt will be generated when AWDCC is set and a current above the threshold is detected on any enabled Halleffect sensor input pin. Clear HPF by writing a Logic [1] to HPF. Reset clears the HPF bit. Writing a Logic [0] to HPF has no effect.

- 1 = One or more of the selected Hall-effect sensor input pins had been pulled HIGH
- 0 = None of the selected Hall-effect sensor input pins has been pulled HIGH

LIN Flag Bit (LINF)

This read/write flag is set on the falling edge at the LIN data line. Clear LINF by writing a Logic [1] to LINF. Reset clears the LINF bit. Writing a Logic [0] to LINF has no effect.

- 1 = Falling edge on LIN data line has occurred
- 0 = Falling edge on LIN data line has not occurred since last clear

High-Temperature Flag Bit (HTF)

This read/write flag is set on a high temperature condition. Clear HTF by writing a Logic [1] to HTF. If a high temperature condition is still present while writing a Logic [1] to HTF, the writing has no effect. Therefore, a high temperature interrupt cannot be lost due to inadvertent clearing of HTF. Reset clears the HTF bit. Writing a Logic [0] to HTF has no effect.

- 1 = High temperature condition has occurred
- 0 = High temperature condition has not occurred

Low Voltage Flag Bit (LVF)

This read/write flag is set on a low voltage condition. Clear LVF by writing a Logic [1] to LVF. If a low voltage condition is still present while writing a Logic [1] to LVF, the writing has no effect. Therefore, a low voltage interrupt cannot be lost due to inadvertent clearing of LVF. Reset clears the LVF bit. Writing a Logic [0] to LVF has no effect.

- 1 = Low voltage condition has occurred
- 0 = Low voltage condition has not occurred

High Voltage Flag Bit (HVF)

This read/write flag is set on a high voltage condition. Clear HVF by writing a Logic [1] to HVF. If high voltage condition is still present while writing a Logic [1] to HVF, the writing has no effect. Therefore, a high voltage interrupt cannot be lost due to inadvertent clearing of HVF. Reset clears the HVF bit. Writing a Logic [0] to HVF has no effect.

- 1 = High voltage condition has occurred
- 0 = High voltage condition has not occurred

Over-current Flag Bit (OCF)

This read-only flag is set on an over-current condition. Reset clears the OCF bit. To clear this flag, write a Logic [1] to the appropriate over-current flag in the SYSSTAT Register. See <u>Figure 10</u>,illustrating the three signals triggering the OCF.

- 1 = High current condition has occurred
- 0 = High current condition has not occurred

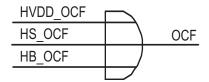


Figure 10. Principal Implementation for OCF

INTERRUPT MASK REGISTER (IMR)

Register Name and Address: IMR - \$04

Bits	7	6	5	4	3	2	1	0
Read	0			HTIE				0
Write	U	TPIE					OCIE	
Reset	0	0	0	0	0	0	0	0

Hall-Effect Sensor Input Pin Interrupt Enable Bit (HPIE)

This read/write bit enables CPU interrupts by the Halleffect sensor input pin flag, HPF. Reset clears the HPIE bit.

- 1 = Interrupt requests from HPF flag enabled
- 0 = Interrupt requests from HPF flag disabled

LIN Line Interrupt Enable Bit (LINIE)

This read/write bit enables CPU interrupts by the LIN flag, LINF. Reset clears the LINIE bit.

- 1 = Interrupt requests from LINF flag enabled
- 0 = Interrupt requests from LINF flag disabled

High Temperature Interrupt Enable Bit (HTIE)

This read/write bit enables CPU interrupts by the high temperature flag, HTF. Reset clears the HTIE bit.

- 1 = Interrupt requests from HTF flag enabled
- 0 = Interrupt requests from HTF flag disabled

Low Voltage Interrupt Enable Bit (LVIE)

This read/write bit enables CPU interrupts by the low voltage flag, LVF. Reset clears the LVIE bit.

- 1 = Interrupt requests from LVF flag enabled
- 0 = Interrupt requests from LVF flag disabled

High Voltage Interrupt Enable Bit (HVIE)

This read/write bit enables CPU interrupts by the high voltage flag, HVF. Reset clears the HVIE bit.

- 1 = Interrupt requests from HVF flag enabled
- 0 = Interrupt requests from HVF flag disabled

Over-current Interrupt Enable Bit (OCIE)

This read/write bit enables CPU interrupts by the overcurrent flag, OCF. Reset clears the OCIE bit.

- 1 = Interrupt requests from OCF flag enabled
- 0 = Interrupt requests from OCF flag disabled

RESET

The 908E625 chip has four internal reset sources and one external reset source, as explained in the paragraphs below. <u>Figure 11</u> depicts the internal reset sources.

RESET INTERNAL SOURCES

Autonomous Watchdog

AWD modules generates a reset because of a timeout (watchdog function).

High Temperature Reset

To prevent damage to the device, a reset will be initiated if the temperature rises above a certain value. The reset is maskable with bit HTRE in the reset mask register. After a reset the high temperature reset is disabled.

Low Voltage Reset

The LVR is related to the internal V_{DD} . In case the voltage falls below a certain threshold, it will pull down the $\overline{RST}A$ pin.

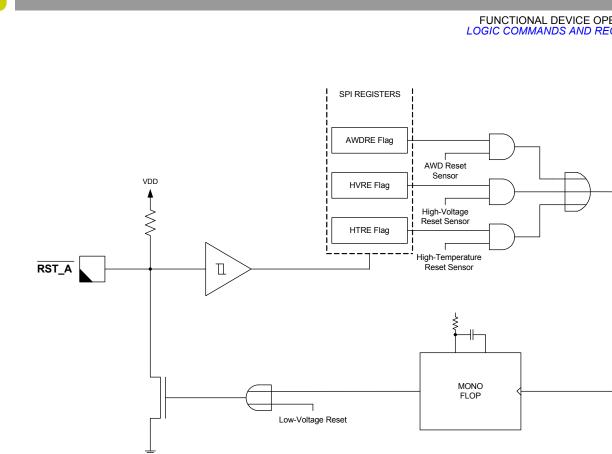


Figure 11. Internal Reset Routing

High-Voltage Reset

The HVR is related to the external $\mathsf{V}_{\mathsf{SUP}}$ voltage. In case the voltage is above a certain threshold, it will pull down the RST_A pin. The reset is maskable with bit HVRE in the Reset Mask Register. After a reset the high voltage reset is disabled.

RESET EXTERNAL SOURCE

External Reset Pin

The microcontroller has the capability of resetting the SMARTMOS device by pulling down the \overline{RST} pin.

RESET MASK REGISTER (RMR)

Bits	7	6	5	4	3	2	1	0
Read	TTEST	0	0	0	0	0		HTRE
Write	TIEST						TVRE	TIRE
Reset	0	0	0	0	0	0	0	0

Register Name and Address: RMR - \$06

High Temperature Reset Test (TTEST)

This read/write bit is for test purposes only. It decreases the over-temperature shutdown limit for final test. Reset clears the HTRE bit.

- 1 = Low temperature threshold enabled
- 0 = Low temperature threshold disabled

High Voltage Reset Enable Bit (HVRE)

This read/write bit enables resets on high voltage conditions. Reset clears the HVRE bit.

- 1 = High voltage reset enabled
- 0 = High voltage reset disabled

High Temperature Reset Enable Bit (HTRE)

This read/write bit enables resets on high temperature conditions. Reset clears the HTRE bit.

- 1 = High temperature reset enabled
- 0 = High temperature reset disabled

ANALOG DIE I/OS

LIN Physical Layer

The LIN bus pin provides a physical layer for single-wire communication in automotive applications. The LIN physical layer is designed to meet the LIN physical layer specification.

The LIN driver is a low side MOSFET with internal current limitation and thermal shutdown. An internal pull-up resistor with a serial diode structure is integrated, so no external pullup components are required for the application in a slave node. The fall time from dominant to recessive and the rise time from recessive to dominant is controlled. The symmetry between both slew rate controls is guaranteed.

The LIN pin offers high susceptibility immunity level from external disturbance, guaranteeing communication during external disturbance.

The LIN transmitter circuitry is enabled by setting the PSON bit in the System Control Register (SYSCTL). If the transmitter works in the current limitation region, the LINCL bit in the System Status Register (SYSSTAT) is set. Due to excessive power dissipation in the transmitter, software is advised to monitor this bit and turn the transmitter off immediately.

TXD PIN

The TXD pin is the MCU interface to control the state of the LIN transmitter (see Figure 1). When TXD is LOW, LIN output is low (dominant state). When TXD is HIGH, the LIN output MOSFET is turned off. The TXD pin has an internal pull-up current source in order to set the LIN bus in recessive state in the event, for instance, the microcontroller could not control it during system power-up or power-down.

RXD PIN

The RXD transceiver pin is the MCU interface, which reports the state of the LIN bus voltage. LIN HIGH (recessive state) is reported by a high level on RXD, LIN LOW (dominant state) by a low level on RXD.

STOP MODE/WAKE-UP FEATURE

During STOP mode operation the transmitter of the physical layer is disabled. The receiver pin is still active and able to detect wake-up events on the LIN bus line.

If LIN interrupt is enabled (LINIE bit in the Interrupt Mask Register is set), a falling edge on the LIN line causes an interrupt. This interrupt switches on the main voltage regulator and generates a system wake-up.

Analog Multiplexer/ADOUT Pin

The ADOUT pin is the analog output interface to the ADC of the MCU. See Figure 12. An analog multiplexer is used to read seven internal diagnostic analog voltages.

Current Recopy

The analog multiplexer is connected to the four low side current sense circuits of the half-bridges. These sense circuits offer a voltage proportional to the current through the low side MOSFET. High or low resolution is selectable: 5.0 V/ 2.5 A or 5.0 V/500 mA, respectively. Refer to Half-Bridge Current Recopy on page 32.)

Analog Input PA1

The analog input PA1 is directly connected to the analog multiplexer, permitting analog values from the periphery to be read.

TEMPERATURE SENSOR

The 908E625 includes an on-chip temperature sensor. This sensor offers a voltage that is proportional to the actual chip junction temperature.

V_{SUP} PRESCALER

The V_{SUP} prescaler permits the reading or measurement of the external supply voltage. The output of this voltage is $V_{SUP}/RATIO_{VSUP}$.

The different internal diagnostic analog voltages can be selected with the ADMUX Register.

ANALOG MULTIPLEXER CONFIGURATION REGISTER (ADMUX)

Register Name and Address: ADMUX - \$07

Bits	7	6	5	4	3	2	1	0
Read	0	0	0	0	SS3	SS2	SS1	SS0
Write					333	552	551	330
Reset	0	0	0	0	0	0	0	0

SS3, SS2, SS1, and SS0—A/D Input Select Bits

These read/write bits select the input to the ADC in the microcontroller according to **Table 7**. Reset clears SS3, SS2, SS1, and SS0 bits.

SS3	SS2	SS1	SS0	Channel				
0	0	0	0	Current Recopy HB1				
0	0	0	1	Current Recopy HB2				
0	0	1	0	Current Recopy HB3				
0	0	1	1	Current Recopy HB4				
0	1	0	0	V _{SUP} Prescaler				
0	1	0	1	Temperature Sensor				
0	1	1	0	Not Used				
0	1	1	1	PA1 Pin				
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1	Not Llood				
1	1	0	0	- Not Used				
1	1	0	1					
1	1	1	0					
1	1	1	1					

Table 7. Analog Multiplexer Configuration Register

ANALOG INPUT PA1

The Analog input PA1 pin provides an input for reading analog signals and is internally connected to the analog multiplexer. It can be used for reading switches, potentiometers or resistor values, etc.

ANALOG INPUT PA1 CURRENT SOURCE

The analog input PA1 has an additional selectable current source. It enables the reading of switches, NTC, etc., without the need of an additional supply line for the sensor illustrated in Figure 12. With this feature it is also possible to read multiple switches on one input.

Current source is enabled if the PSON bit in the System Control Register (SYSCTL) and the CSEN bit in the Power Output Register (POUT) is set.

Four different current source values can be selected with the CSSELx bits shown in Table 8. This function ceases during STOP mode operation.

Table 8. F	PA1	Current Sc	ource Level	Selection Bits
------------	-----	------------	-------------	----------------

CSSEL1	CSSEL0	Current Source Enable (typ.)
0	0	10%
0	1	30%
1	0	60%
1	1	100%

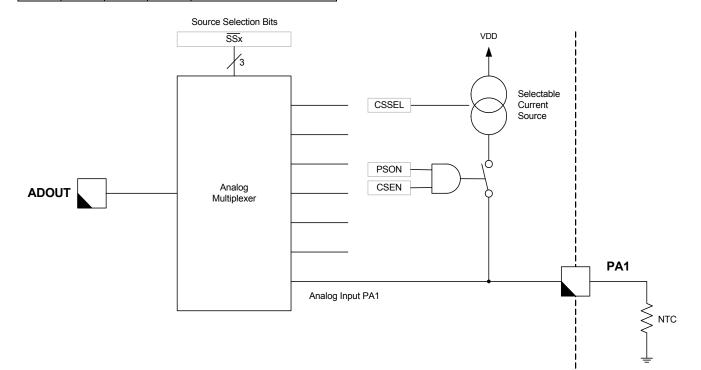


Figure 12. Analog Input PA1 and Multiplexer