imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Document Number: MMA27XXW Rev. 0.5, 4/2013

VRoHS

Xtrinsic MMA27XXW/17XXW DSI3 Inertial Sensor

MMA27XXW/17XXW family, a SafeAssure solution, includes the DSI3 compatible overdamped X-axis or Z-axis satellite accelerometers.

Features

- ± 25 g, ± 125 g, ± 187 g, ± 250 g, ± 375 g, X-axis nominal full-scale range
- ±250 g, Z-axis nominal full-scale range
- DSI3 compatible
 - Discovery Mode for physical location identification
 - High-side bus switch output driver
 - Command and Response Mode support for device configuration
 - Periodic Data Collection Mode support for acceleration data transfers
 - Background Diagnostic Mode support during Periodic Data Collection Mode
- -40°C to 125°C operating temperature range
- 16 μ s internal sample rate, with interpolation to 1 μ s
- Six selectable low-pass filter options from 180 Hz to 1200 Hz
- · Single-pole, IIR high-pass filter with fast startup and optional output rate limiting
- Pb-Free, 16-pin QFN, 6 x 6 package

Referenced Documents

- DSI3 Standard Revision 1.0, Dated February 16, 2011
- AEC-Q100, Revision G, dated May 14, 2007

	ORDERING INFORMATION										
Part Number	Axis	Range	Package	Shipping							
MMA2702W	Х	±25 g	2086-01	Rail							
MMA2712W	Х	±125 g	2086-01	Rail							
MMA2718W	Х	±187 g	2086-01	Rail							
MMA2725W	Х	±250 g	2086-01	Rail							
MMA2737W	Х	±375 g	2086-01	Rail							
MMA1725W	Z	±250 g	2086-01	Rail							
MMA2702WR2	х	±25 g	2086-01	Tape & Reel							
MMA2712WR2	х	±125 g	2086-01	Tape & Reel							
MMA2718WR2	х	±187 g	2086-01	Tape & Reel							
MMA2725WR2	х	±250 g	2086-01	Tape & Reel							
MMA2737WR2	х	±375 g	2086-01	Tape & Reel							
MMA1725WR2	Z	±250 g	2086-01	Tape & Reel							

MMA27XXW

This document contains information on a new product. Specifications and information herein are subject to change without notice. Freescale reserves the right to change the detail © 2013 Freescale Semiconductor, Inc. All rights reserved.

Contents

1	Bloc	k Diagram, Pin Descriptions, Application Diagram, and Device Orientation	3
	1.1	Block diagram	3
	1.2	Pin descriptions.	4
	1.3	Application diagram	5
	1.4	Device orientation and device marking	6
2	Elect	rical Characteristics	7
	2.1	Maximum ratings	7
	2.2	Operating range	7
	2.3	Electrical characteristics - supply and I/O.	8
	2.4	Electrical Characteristics - sensor and signal chain	9
	2.5	Electrical characteristics - self-test and overload	10
	2.6	Dynamic electrical characteristics - DSI3	11
	2.7	Dynamic electrical characteristics - signal chain	12
	2.8	Dynamic electrical characteristics - supply and support circuitry	13
3	Func	tional Description	14
	3.1	User-accessible data array	14
	3.2	OTP and Read/Write register array CRC verification	31
	3.3	Voltage regulators	33
	3.4	Internal oscillator	37
	3.5	Acceleration signal path	38
	3.6	DSI3 physical layer	55
	3.7	Data transmission modes	58
	3.8	Initialization timing.	59
	3.9	Overload response	30
4	DSI3	Protocol	51
	4.1	Address assignment	51
	4.2	DSI3 Command and Response Mode	32
	4.3	DSI3 Periodic Data Collection Mode and Background Diagnostic Mode	72
	4.4	Maximum number of devices on a network	77
5	Exce	ption Handling	78
6	Reco	mmended Footprint	79
7	Pack	age Dimensions	30
8	Revis	sion History	33

Related Documentation

The MMA27XXW and MMA17XXW devices features and operations are described in a variety of reference manuals, user guides, and application notes. To find the most-current versions of these documents:

1. Go to the Freescale homepage at:

http://www.freescale.com/

- 2. In the Keyword search box at the top of the page, enter the device number MMA27XXW or MMA17XXW.
- 3. In the Refine Your Result pane on the left, click on the Documentation link.

1

Block Diagram, Pin Descriptions, Application Diagram, and Device Orientation

1.1 Block diagram

Figure 1. Internal block diagram

NP —

1.2 Pin descriptions

Figure 2. Pin connections

Table 1. Pin descriptions

Pin	Pin name	Formal name	Definition
1	BUS_O	Supply out	This pin is connected to the BUS_I pin through an internal sense resistor and provides the supply connection to the next slave in a daisy-chain configuration. An external capacitor must be connected between this pin and V _{SS} . Reference Figure 3.
2	NC	Not connected	This pin is not internally connected and must be left unconnected or tied to V_{SS} in the application.
3	BUS_I	Supply and communication	This pin is connected to the DSI supply line and supplies power to the device. An external capacitor must be connected between this pin and BUSRTN. Reference Figure 3.
4	BUSRTN	Supply return	This pin is the DSI supply return node.
5	PCM	Pulse code modulated output	If the PCM output is enabled, this pin provides a 4 MHz PCM signal proportional to the acceleration data for test purposes. If PCM is unused, this pin must be left unconnected.
6	TEST_SCLK	SPI clock	This input pin provides the serial clock to the SPI port for test purposes. An internal pull-down device is connected to this pin. This pin must be grounded or left unconnected in the application.
7	TEST_MISO	SPI data out	This pin functions as the serial data output from the SPI port for test purposes. This pin must be left unconnected in the application.
8	TEST_MOSI	SPI data in	This pin functions as the serial data input to the SPI port for test purposes. An internal pull-down device is connected to this pin. This pin must be grounded or left unconnected in the application.
9	V _{REG}	Internal supply	This pin is connected to the power supply for the internal circuitry. An external capacitor must be connected between this pin and V_{SS} . Reference Figure 3.
10	TEST_CS	Chip select	This input pin provides the chip select to the SPI port for test purposes. An internal pullup device is connected to this pin. This pin must be left unconnected in the application.
11	V _{REGA}	Internal supply	This pin is connected to the power supply for the internal circuitry. An external capacitor must be connected between this pin and V_{SSA} . Reference Figure 3.
12	V _{SS}	Internal supply return	This pin is the power supply return node for the internal power supplies and must be connected to BUSRTN in this application.
13	V _{BUF}	Power supply	This pin is connected to a buffer regulator for the internal circuitry. The buffer regulator supplies the internal regulators to provide immunity from EMC and supply dropouts. An external capacitor must be connected between this pin and V _{SS} . Reference Figure 3.
14	TEST2	Test pin	This pin is must be connected to V_{SS} in the application.
15	TEST	Test pin	This pin is must be connected to V_{SS} in the application.
16	BUSSW	Bus switch gate drive	This pin is the drive for a high-side, daisy-chain switch. When switch is connected, daisy-chain mode is used, this pin is connected to the gate of a p-channel FET which connects BUS_I to the next slave in the daisy chain. An external pullup resistor is required on the gate of the p-channel FET. Reference Section 3.6.4. If unused, this pin must be left unconnected.
17	PAD	Die attach pad	This pin is the die attach flag, and is internally connected to V _{SS} . Reference Section 6 for die attach pad connection details.
	Corner pads	Corner pads	The corner pads are internally connected to V _{SS} .

1.3 Application diagram

Figure 3. MMA27XXW/17XXW application diagram

Table 2.	External	component	recommendations
----------	----------	-----------	-----------------

Ref Des	Туре	Description	Purpose
C1	Ceramic	220 pF, 10%, 50 V minimum, X7R	BUSIN EMC and ESD protection. Capacitor value is dependent on the DSI3 master device and must be chosen by the system implementer.
C2	Ceramic	1 μF, 10%, 10 V minimum, X7R	Voltage regulator output capacitor
C3	Ceramic	1 μF, 10%, 10 V minimum, X7R	Voltage regulator output capacitor
C4	Ceramic	1 μF, 10%, 10 V minimum, X7R	Voltage regulator output capacitor
C5	Ceramic	100 pF, 10%, 50 V minimum, X7R	BUSOUT EMC and ESD protection
C6	Ceramic	100 pF, 10%, 50 V minimum, X7R	BUSOUT EMC and ESD protection
R1	General purpose	100 kΩ, 5%, 200 PPM	Pullup resistor for external high-side, daisy-chain FET
M1	P-channel MOSFET		High-side, daisy-chain transistor
D1	Zener diode	MMBZ27Vxxxx or equivalent	ESD protection diode

1.4 Device orientation and device marking

EARTH GROUND

Figure 4. Device orientation diagram

Figure 5. Device marking

2 Electrical Characteristics

2.1 Maximum ratings

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it.

#	Rating	Symbol	Value	Unit	
1	Supply voltage (BUS_I, BUS_O, BUSSW)				
2	Reverse current \leq 160 mA, t \leq 80 ms	BUS_I_REV	-0.7	V	(6)
3	Continuous	BUS_I_MAX	+20.0	V	(6)
4	Transient (< 10 us)	BUS_I_TRANS	+25.0	V	(9)
5	V _{BUF}		-0.3 to +4.0	V	(6)
6	V _{REG} , V _{REGA} , TEST_SCLK, TEST_CS, TEST_MOSI, TEST_MISO, PCM		-0.3 to +3.0	V	(6)
7	BUS_I, BUS_O and BUSRTN current				
8	Maximum duration 560 μ s, with 10 ms repetition rate	I _{IN}	200	mA	(6)
9	Continuous	I _{IN}	150	mA	(6)
10	Powered shock (six sides, 0.5 ms duration)	9 _{pms}	±2000	g	(5)
11	Unpowered shock (six sides, 0.5 ms duration)	g shock	±2000	g	(5)
12	Drop shock (to concrete, tile or steel surface, 10 drops, any orientation)	h _{DROP}	1.2	m	(5)
13	Electrostatic discharge (per AEC-Q100), external pins				
14	BUS_I, BUS_O, BUSRTN, HBM (100 pF, 1.5 kΩ)	V _{ESD}	±4000	V	(5)
15	Electrostatic discharge (per AEC-Q100)				
16	HBM (100 pF, 1.5 kΩ)	V _{ESD}	±2000	V	(5)
17	$CDM (R = 0 \Omega)$	V _{ESD}	±500	V	(5)
18	MM (200 pF, 0 Ω)	V _{ESD}	±200	V	(5)
19	Temperature range				
20	Storage	T _{stq}	-40 to +125	°C	(5)
21	Junction	TJ	-40 to +150	°C	(9)
22	Thermal resistance	θ_{JC}	2.5	°C/W	(9,11)

2.2 Operating range

 $V_{BUS_I_L} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 12^\circ C/\text{min}, \ \text{unless otherwise specified}.$

#	Characteristic	Symbol	Min	Тур	Max	Units	
23	Supply voltage (measured at BUS_I pin)						
24	V _{HIGH} *	V _{BUS_I_HIGH_max}	_	_	20.0	V	(1,6)
25	V _{LOW} rising	V _{BUS_I_LOW_Rise}	4.5	—	—	V	(9)
26	V _{LOW} falling *	V _{BUS_I_LOW_Fall}	4.0	—	—	V	(1)
27	Supply voltage (undervoltage)	V _{BUS_I_UV}	V _{BUS_I_UV_F}		$V_{BUS_I_LOW_Fall}$	V	(3,6)
20	Programming voltage (I _{RD} ≤ 85 mA)						
20	Applied to BUS_I	VPP	14.0		V _{BUS_I_HIGH_max}	V	(6)
29	ESD operating voltage						
30	(No device reset, C _{BUS IN} = 220 pF, D1 = MMBZ27Vxxxx)						
31	Maximum $\pm 15~{ m kV}$ air discharge, 330 pF, 2.0 k Ω	VBUS_I_ESD	—	—	12.0	V	(9)
32	Operating temperature range		ΤL		Т _Н		
33		T _A	-40	—	+105	°C	(1)
34		T _A	-40	—	+125	°C	(5,6)

2.3 Electrical characteristics - supply and I/O

 $V_{BUS \ I \ L} \leq (V_{BUS \ I} - V_{SS}) \leq V_{BUS \ I \ H}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 12 \ ^\circ C/min, \ unless \ otherwise \ specified.$

#	Characteristic	Symbol	Min	Тур	Max	Units	
35	Quiescent supply current $V_{BUS_I} = 4 V, V_{BUS_I} = 20 V$ *	lq	4.0	_	8.0	mA	(1)
36 37	Response current Low * High *	I _{RESP} 2*I _{RESP}	l _q + 10.50 l _q + 21.0	l _q + 12.0 l _q + 24.0	l _q + 13.5 l _q + 27.0	mA mA	(1) (1)
38	V _{BUF} current limit	I _{INRUSH_MAX}	_	—	30	mA	(6)
39 40 41	$\label{eq:states} \begin{array}{l} \mbox{Internally regulated voltages} \\ V_{BUF}, \ V_{BUS_I} = 4 \ V, \ V_{BUS_I} = 20 \ V \\ V_{REG}, \ V_{BUS_I} = 4 \ V \\ V_{REGA}, \ V_{BUS_I} = 4 \ V, \ V_{BUS_I} = 20 \ V \end{array} \qquad \qquad$	V _{BUF} V _{REG} V _{REGA}	3.250 2.400 2.425	3.400 2.500 2.500	3.550 2.600 2.575	V V V	(1) (1) (1)
42 43 44 45 46	Low-voltage detection threshold BUS_I falling V_{BUF} falling V_{REG} falling V_{REGA} falling V_{REGA} falling Low-voltage detection hysteresis	Vbus_i_uv_f Vbuf_uv_f Vreg_uv_f Vrega_uv_f Vrega_uv_f Vhyst	3.60 2.80 2.15 2.15 0.04	3.75 3.05 2.25 2.25 —	3.90 3.20 2.35 2.35 —	V V V V V	(3,6) (3,6) (3,6) (3,6) (3,6)
47 48	External capacitor (V _{BUF} , V _{REG} , V _{REGA}) Capacitance ESR (including interconnect resistance)	C _{VBUF} , C _{VREG} , C _{VREGA} ESR	500 0	1000 —	1500 200	nF mΩ	(9) (9)
49 50	V _{LOW} detection threshold (Section 3.6.1) V _{LOW} detection threshold * V _{LOW} detection hysteresis	Vdelta_thresh Vdelta_thresh_hyst	V _{HIGH} -1.25 40	V _{HIGH} -1.0 60	V _{HIGH} -0.75 80	V mV	(3,6) (6)
51 52	Discovery Mode current sense (Section 3.6.3) Sense resistor I_{RESP} detection threshold ($I_{BUS_O_q} \le 24$ mA)	R _{SENSE} I _{RESP_Det} , V _{IRESP_Offset}	1.3 6	2.15 12	3 18	Ω mA	(6) (3,6)
53	Bus switch output low voltage (Section 3.6.4) $I_{Load} = 100 \ \mu A$	V _{BUS_SW_OL}	0.0	_	0.45	v	(3,6)
54	Bus switch open drain output leakage current (BUSSW) V _{BUSSW} = 20 V	I _{BUS_SW_ODL}	_	_	10	μA	(3,6)
55	Output high voltage (PCM) I _{Load} = -100 μA	V _{OH}	V _{REG} - 0.1	_	_	v	(3)
56	Output low voltage (PCM) I _{Load} = 100 μA	V _{OL}	_	_	0.1	v	(3)

2.4 Electrical Characteristics - sensor and signal chain

 $V_{BUS_L_L} \leq (V_{BUS_L} - V_{SS}) \leq V_{BUS_L_H}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 12 \ ^\circ C/min, \ unless \ otherwise \ specified.$

#	Characteristic	Symbol	Min	Тур	Max	Units	
	Sensitivity (T _A = 25°C, 10-bit output @ 100 Hz, referenced to 0Hz: ±5%)						
57	±25 g range *	SENS ₀₂₅	19.456	20.480	21.504	LSB/g	(1)
58	±125 g range *	SENS ₁₂₅	3.8912	4.0960	4.3008	LSB/g	(1)
59	±187 g range *	SENS ₁₈₇	2.5944	2.7310	2.8676	LSB/g	(1)
60	±250 g range *	SENS ₂₅₀	1.9456	2.0480	2.1504	LSB/g	(1)
61	±375 g range *	SENS ₃₇₅	1.2967	1.3650	1.4333	LSB/g	(1)
	Sensitivity ($T_L \le T_A \le T_H$, $V_{BUS_LUV_F} \le V_{BUS_L} \le V_{LOW}$ 10-bit output @ 100 Hz, referenced to 0 Hz: ±7%)						
62	±25 g range *	SENS ₀₂₅	19.046	20.480	21.914	LSB/g	(1)
63	±125 g range *	SENS ₁₂₅	3.8092	4.0960	4.3828	LSB/g	(1)
64	±187 g range *	SENS ₁₈₇	2.5398	2.7310	2.9222	LSB/g	(1)
65	±250 g range *	SENS ₂₅₀	1.9046	2.0480	2.1914	LSB/g	(1)
66	±375 g range *	SENS ₃₇₅	1.2694	1.3650	1.4606	LSB/g	(1)
	Digital offset before offset cancellation (10-bit)						
67	±25 g, ±125 g, ±250 g Z-axis *	OFF _{10Bit}	-100	0	+100	LSB	(1)
68	$V_{BUS_{\perp}UV_{\perp}F} \le V_{BUS_{\perp}I} \le V_{LOW}$, ±25 g, ±125 g, ±250 g Z-axis	OFF _{10Bit}	-100	0	+100	LSB	(6)
69	±187 g, ±250 g X-axis, ±375 g *	OFF _{10Bit}	-52	0	+52	LSB	(1)
70	$V_{BUS_{L}UV_{F}} \le V_{BUS_{I}} \le V_{LOW}$, ±187 g, ±250 g X-axis, ±375 g	OFF _{10Bit}	-52	0	+52	LSB	(6)
71	Digital offset after offset cancellation (10-bit, all filter options)	OFF _{10Bit}	-1	0	+1	LSB	(6,8,9)
	Continuous offset monitor limit						
72	10-bit output, before compensation, ±25 g	OFF _{MON}	-150		+150	LSB	(7,8)
73	10-bit output, before compensation, ±125 g, ±250 g Z-axis	OFF _{MON}	-120		+120	LSB	(7,8)
74	10-bit output, before compensation, ±187 g, ±250 g X-axis, ±375 g	OFF _{MON}	-70		+70	LSB	(7,8)
	Range of output (10-bit mode)						
75	Acceleration (signed)	RANGE _{Signed}	-511		+511	LSB	(7,8)
76	Acceleration (unsigned)	RANGEUnsigned	1		1023	LSB	(7,9)
77	Error code (signed)	ERR _{Signed}	—	-512	—	LSB	(7,8)
78	Error code (unsigned)	ERR _{Unsigned}	_	0	—	LSB	(7,9)
	Cross-axis sensitivity						
79	Z-axis to X-axis	V _{ZX}	-5		+5	%	(6)
80	Y-axis to X-axis	V _{YX}	-5	—	+5	%	(6)
81	X-axis to Z-axis	V _{XZ}	-5		+5	%	(6)
82	Y-axis to Z-axis	V _{YZ}	-5		+5	%	(6)
	System output noise peak (peak value of 100 samples @ 2 kHz)						
83	10-bit mode, LPF = 180 Hz, 2-Pole, All Ranges	n _{Peak_180}	-3		+3	LSB	(1)
84	10-bit mode, LPF = 400 Hz, 4-Pole, All Ranges	n _{Peak_400}	-4	—	+4	LSB	(6)
	System output noise average (average value of 100 samples @ 2 kHz)	D- 110					
85	10-bit mode, LPF = 180 Hz, 2-pole, all ranges *	"RMS_180	—	—	+1.0	LSB	(1)
86	10-bit mode, LPF = 400 Hz, 4-pole, all ranges *	''RMS_400	—	—	+1.0	LSB	(6)
87	Nonlinearity (10-bit output, all ranges)	NL _{OUT}	-2	_	+2	%	(6)

2.5 Electrical characteristics - self-test and overload

 $V_{BUS_L_L} \leq (V_{BUS_L} - V_{SS}) \leq V_{BUS_L_H}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 12^{\circ}C/\text{min}, \ \text{unless otherwise specified}.$

#	Characteristic	Symbol	Min	Тур	Max	Units	
	10-bit output during active self-test		∆ST _{MIN}	∆ST _{NOM}	∆ST _{MAX}		
88	±25 g range, X-axis *	9 _{ST10} 25X	124	_	208	LSB	(1)
89	±125 g range, X-axis *	9ST10 125X	236	_	395	LSB	(1)
90	±187 g range, X-axis *	9st10 187X	156	—	263	LSB	(1)
91	±250 g range, X-axis *	9 _{ST10} 250X	117	—	198	LSB	(1)
92	±375 g range, X-axis *	9st10_375X	77	—	131	LSB	(1)
93	±250 g range, Z-axis *	9st10_250Z	80	—	160	LSB	(1)
	Self-test accuracy: Δ from stored value, including sensitivity error						
94	$-40^{\circ}C \le T_A \le 125^{\circ}C$ (Section 3.5.2) *	∆STACC	-10	—	+10	%	(1,5
	Transducer clipping limit						
95	±25 g, X-axis, positive/negative	ga-cell ClipLowX	400	470	500	g	(9)
96	±125 g, ±187 g, ±250 g, ±375 g, X-axis, positive/negative	g-cell ClipHiX	1700	2100	2300	g	(9)
97	±250 g, Z-axis positive	g _{q-cell} ClipHiZP	2200	2700	3300	g	(9)
98	±250 g, Z-axis negative	9g-cell_ClipHiZN	-3700	-3200	-2700	g	(9)
	Sinc filter clipping limit						
99	±25 g, X-axis, positive/negative (MMA2702WR2)	GADC Clip 25X H	190	210	240	g	(9)
100	±125 g, X-axis, positive/negative (MMA2712WR2)	9ADC Clip 125X H	920	1100	1300	g	(9)
101	±187 g, X-axis positive/negative (MMA2718WR2)	9ADC Clip 187X H	1600	1900	2200	g	(9)
102	±250 g, X-axis positive/negative (MMA2725WR2)	9ADC_Clip_250X_H	1600	1900	2200	g	(9)
103	±375 g, X-axis positive/negative (MMA2737WR2)	9ADC_Clip_375X_H	1600	1900	2200	g	(9)
104	+250 g. Z-axis, positive (MMA1725WB2)		1500	2000	2500	a	(9)
105	$\pm 250 \text{ g}$, Z axis, positive (MMA1725W/P2)	a area on the second se	2200	2000	2500	3	

2.6 Dynamic electrical characteristics - DSI3

 $V_{BUS_I_L} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 12^{\circ}C/\text{min}, \ \text{unless otherwise specified}.$

#	Characteristic	Symbol	Min	Тур	Max	Units	
	Reset recovery (all modes, excluding V _{BUS 1} voltage ramp time)						
106	POR to 1st command (Section 3.6)	t _{DSI POR}	_	5	_	ms	(7,8)
107	POR to acceleration data ready (Section 3.6)	t _{DSP POR}	_	t _{DSI POR}	_	s	(7,8)
	Command reception (general)						
108	V _{HIGH} low-pass filter time constant (Section 3.6.1)	t _{VHIGH} BC	60	120	180	μs	(8,9)
109	V _{HIGH} detection analog delay (Section 3.6.1)	t _{VHIGH} Delay	_	—	600	ns	(8,9)
110	i _g low-pass filter time constant (Section 3.6.3)		200	400	600	μs	(8,9)
111	Command valid time (Section 3.6.1)	t _{Cmd} Valid	_	2	_	μs	(7,9)
	Response transmission (general, Section 4.2.3)						
112	Response slew time: 2.0 mA to 10.0 mA, 10.0 mA to 2.0 mA	tsi ewi Besp	200	400	600	ns	(6,8)
113	Response slew time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA	tsi EW2 BESP	200	400	600	ns	(6,8)
114	tslew1 resp ^{- t} slew2 resp	Δt_{SLEW}	-100	—	100	ns	(8,9)
115	tSLEW1 RESP Rise ^{- t} SLEW2 RESP Fall	$\Delta t_{SLEW rf}$	-250	_	250	ns	(8,9)
116	Response current activation time: current activated to 50%	tACT RESP	200	_	400	ns	(8,9)
	Command reception (Discovery Mode)						
117	Command start time (Section 4.1)	t _{START DISC}	t _{DSL POB}	—	12	ms	(7,8)
118	Command bit time (Section 4.1)	t _{DISC BitTime}		16	_	μs	(7,8)
119	Command transmission period (Section 4.1)	t _{PER DISC}	1000/f _{OSC}	_	—	s	(7,8)
120	Command blocking time, Discovery Mode (Section 3.6.1)	t _{CmdBlock} DISC	_	96	—	μs	(7,8)
121	I _{CCQ} sample delay time (Section 3.6.3)	t _{Disc Dly}	—	48	—	μs	(7,9)
122	I _{CCQ} sample time (Section 3.6.3)	t _{Disc Iccqsamp}	_	15	—	μs	(7,9)
123	I _{DISC} sample delay time (Section 3.6.3)	t _{IDiscsamp} Dly	_	65	—	μs	(7,9)
124	I _{DISC} sample time (Section 3.6.3)	t _{IDiscsamp}	_	31	_	μs	(7,9)
	Response transmission (Discovery Mode)						
125	Response start delay (Section 4.1)	t _{START} DISC RSP	—	64	—	μs	(7,8)
126	Response ramp time (Section 4.1)	t _{DISC Ramp RSP}	—	16	—	μs	(7,8)
127	Response ramp rate (Section 4.1)	IDISC Ramp	_	1.5	_	mA/μs	(6,8)
128	Response idle time (Section 4.1)	t _{DISC Idle RSP}	_	16	_	μs	(7,8)
129	Response peak current (Section 4.1)	I _{DISC_Peak}	_	2*I _{RESP}	_	mA	(6,8)
	Command reception (Command and Response Mode)						
130	Command bit time (Section 4.2)	t _{Cmd BitTime}	_	8	_	μs	(7,8)
131	Command transmission period (Section 4.2)	t _{PER} CRM	t _{PER PDCM}	—	8 x t _{PER PDCM}	S	(7,8)
132	Command blocking time, CRM (Section 3.6.1)	t _{CmdBlock} CRM		456	_	μs	(7,8)
133	Command blocking start time, CRM (Section 3.6.1)	t _{CmdBlock_ST_CRM}	-	268	_	μs	(7,8)
	Response transmission (Command and Response Mode)						
134	Response chip time	t _{CHIP} CRM	_	5	_	μs	(7,8)
135	Response start time (Section 4.2)	t _{START_CRM}	_	295	_	μs	(7,8)
	Command reception (Periodic Data Collection Mode)						
136	Command bit time (Section 4.3)	t _{Cmd BitTime}	—	8	—	μs	(7,8)
137	Command transmission period (Section 4.3)	tPER PDCM	100	—	5000	μs	(7,8)
138	Command transmission period resolution	t _{PER PDCM Res}	_	5	_	μs	(7,8)
139	Command blocking time, PDCM (Section 4.3.2)	t _{CmdBlock_PDCM}	1	—	4095	μs	(7,8)
140	Command blocking time resolution, PDCM (Section 4.3.2)	t _{CmdBlockRes_PDCM}	—	1	—	μs	(7,8)
141	Command blocking start time, PDCM (Section 4.3.2)	t _{CmdBlock_ST_PDCM}	—	20	—	μs	(7,8)
142	Command blocking start time, BDM command	t _{CmdBlock_ST_BDM}		44	_	μs	(7,8)
	Response transmission (Periodic Data Collection Mode)						
143	Response chip time typical (Section 3.1.15.3)	t _{CHIP_PDCM}	3	—	6.5	μs	(7,8)
144	Response chip resolution (Section 3.1.15.3)	t _{CHIPRes_PDCM}	—	0.5	—	μs	(7,8)
145	Response start time typical (Section 4.3)	^t START_PDCM	20	—	4095	μs	(7,8)
146	Response start time typical, BDM enabled (Section 4.3)	^t START_PDCM_BDM	44		4095	μs	(7,8)
14/	Response start time resolution	t _{ST_RES_PDCM}		1		μs	(7,8)
	Response transmission (Background Diagnostic Mode)						
148	Response start time (Section 4.3)	t _{START_BDM}	-	20	—	μs	(7,8)
149	Register write to BUSSW active	t _{RS}	—	456	_	μs	(7,8)
150	DSI data latency		<u> </u>	0.5	6.25		(7.9)
		LAI_DOI		0.0	0.20	- PO	(.,0)
151	Time to program the user OTP arrow	+			60	ma	(7 0)
101	nine to program the user OTP afray	<pre>'NVM_WRITE_MAX</pre>	_	_	00	1115	(7,0)

2.7 Dynamic electrical characteristics - signal chain

 $V_{BUS_I_L} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H}, T_L \leq T_A \leq T_H, \Delta T \leq 12 \text{ °C/min, unless otherwise specified.}$ Table 3.

#	Characteristic	Symbol	Min	Тур	Мах	Units	
	DSP low-pass filter						
152 153	Cutoff frequency LPF0, 2-pole (referenced to 0 Hz) * Cutoff frequency LPF6, 3-pole (referenced to 0 Hz) *	f _{C_LPF0} f _{C_LPF6}	_	180 325	_	Hz Hz	(6,7) (6,7)
154	Cutoff frequency LPF8, 3-pole (referenced to 0 Hz) *	f _{C LPF8}	_	400	—	Hz	(7,8)
155	Cutoff frequency LPF9, 4-pole (referenced to 0 Hz) *	f _{C LPF9}		400	_	Hz	(7,8)
157	Cutoff frequency LPF11, 4-pole (referenced to 0 Hz) *	f _{C LPF11}	—	800		Hz	(7,8)
158	Cutoff frequency LPF14, 4-pole (referenced to 0 Hz) *	f _{C_LPF14}	—	1200	—	Hz	(7,8)
159 160 161 162 163 164 165 166	DSP offset cancellation low-pass filter Offset Cancellation low-pass filter Input sample Rate Cutoff frequency, startup Phase 1, 1-pole Startup Phase 1 time Cutoff frequency, startup Phase 2, 1-pole Startup Phase 2 time Offset cancellation output update rate (10-bit) Offset cancellation output step size (10-bit) Offset monitor update rate	toc_SampleRate fc_ocpH1 tocpH1 fc_ocpH2 tocpH2 toffRate OFFStep OFFMONosc		256 10.0 80 1.0 70 2 0.5 500		μs Hz ms Hz s LSB μs	(7,9) (7,9) (7,9) (7,9) (7,9) (7,9) (7,9) (7,8)
167	Offset monitor count limit	OFFMON _{CNTLIMIT}	—	4096	—	1	(7,8)
168	Offset monitor counter size	OFFMON _{CNTSIZE}	—	8192	—	1	(7,8)
169	Signal delay excluding LPF group delay and interpolation	t _{SIG_DELAY}	—	—	100	μs	(7,9)
170	Interpolation latency	t _{LAT_INTERP}	—	16	—	μs	(7,9)
171	Self-test response time (CS Rising to 90% g _{ST10_xxx}) Self-test activation time (180 Hz LPF)	t _{ST_ACT_180}	2.00	_	4.00	ms	(3,6)
172	Self-test deactivation time (160 HZ LPF)	^L ST_DEACT_180	2.00	_	4.00	mo	(3,0)
173	Self-test depetivation time (325 Hz LPF, 3 Pole)	^I ST_ACT_325	1.30	_	2.70	mo	(0)
174	Solf test activation time (400 Hz L PE 2 or 4 Polo)	^L ST_DEACT_325	1.00	_	2.70	mc	(0)
175	Self-test depetivation time (400 Hz LPF, 3 of 4 Pole)	^I ST_ACT_400	1.00	_	2.50	mo	(0)
177	Solf test activation time (400 Hz LPF, 3 01 4 Pole)	^L ST_DEACT_400	1.00	_	2.50	mo	(0)
178	Self test desetivation time (800 Hz LPT)	'ST_ACT_800	0.50	_	1.75	mc	(0)
179	Solf test activation time (000 Hz LPT)	'ST_DEACT_800	0.30		1.75	me	(0)
180	Self-test deactivation time (1200 Hz LPF)	IST_ACT_800	0.40	_	1.50	ms	(6)
	Sensing element rolloff frequency (-3 db)	-ST_DEACT_600					(-)
181	±25 g, X-axis	f _{gcell} 3dB xlo	938	1600	2592	Hz	(6)
182	±125 g, ±187 g, ±250 g, ±375 g, X-axis	f _{gcell} 3dB xhi	3952	7200	14370	Hz	(6)
183	±250 g, Z-axis	f _{gcell_3dB_zhi}	3100	4500	6500	Hz	(6)
	Sensing element natural frequency						
184	±25 g, X-axis	f _{gcell_xlo}	12651	13200	13871	Hz	(9)
185	±125 g, ±187 g, ±250 g, ±375 g, X-axis	f _{gcell_xhi}	26000	27500	28700	Hz	(9)
186	±250 g, Z-axis	f _{gcell_zhi}	15000	17000	17500	Hz	(9)
	Sensing element damping ratio						(-)
187	±25 g, X-axis	ζgcell_xlo	2.76	4.20	6.77		(9)
188	± 125 g, ± 187 g, ± 250 g, ± 375 g, X-axis	Sgcell_xhi	1.26	2.00	3.60		(9)
189	$\pm 250 \text{ g}, 2\text{-axis}$	Sgcell_zhi	1.40	2.00	2.90		(9)
100	Sensing element delay (@100 Hz)	f	62	100	170		(0)
190	$\pm 23 \text{ y}, \Lambda^{-} dX \text{ is}$ $\pm 125 \text{ a}, \pm 187 \text{ a}, \pm 250 \text{ a}, \pm 275 \text{ a}, X \text{ avia}$	'gcell_delay100_xlo	12	24	1/0	μs	(9)
191	± 125 y, ± 107 y, ± 250 y, ± 575 y, -3215	¹ gcell_delay100_xhi	13	24 40	40		(9)
102		'gcell_delay100_zhi	35	40	55	μs	(9)
193	Package resonance frequency	† _{Package}	100	—	—	kHz	(9)

$V_{BUS I} \leq (V_{BUS I} - V_{SS}) \leq V_{BUS H}$, $I_L \leq I_A \leq I_H$, $\Delta I \leq 12$ °C/min, unless otherwise spe
--

#	Characteristic	Symbol	Min	Тур	Max	Units	
194 195	Internal oscillator period Untrained * With oscillator training	fosc fosc	7.600 7.879	8.000 8.000	8.400 8.121	MHz MHz	(1) (7,8,9)
196 197 198 199	Oscillator training (Section 3.4.1) Oscillator training time (CRM and PDCM) Oscillator training window (CRM and PDCM) Oscillator training adjustment threshold (CRM and PDCM) Oscillator training step size (CRM and PDCM)	t _{OscTrain} OscTrain _{WIN} OscTrain _{ADJ} OscTrain _{RES}	 3.4 -60 	4 — 28	 4.6 60 	ms ms μs μs	(7) (7) (7) (7)
200	Quiescent current settling time (power applied to Iq = $I_{IDLE} \pm 2 \text{ mA}$)	t _{SET}	—	—	4	ms	(6)
201 202	BUS_I microcut Survival time (BUS_I disconnect without reset, C _{BUF} =C _{REG} =C _{REGA} =700nF) Reset time (BUS_I disconnect time to reset, C _{BUF} =C _{REG} =C _{REGA} =1µF)	^t BUS_I_MICROCUT ^t BUS_I_RESET	30 —		 1000	μs μs	(8) (8)
203	BUS_I undervoltage detection delay BUS_I < V _{BUS_I_UV_F} to I _{RESP} deactivation	t _{BUS_1_} POR	_	_	5	μs	(6)
204	V_{BUF} undervoltage detection delay $V_{BUF} < V_{BUF_{UV}F}$ to I _{RESP} deactivation	t _{vbuf_por}	_	_	5	μs	(6)
205	V_{REG} , V_{REGA} undervoltage reset delay $V_{REG} < V_{REG_UV_F}$ to \overline{POR} assertion, $V_{REGA} < V_{REGA_UV_F}$ to \overline{POR} assertion	tvreg_por	_	_	50	μs	(6)
206 207	V _{BUF} , V _{REG} , V _{REGA} capacitor monitor POR to capacitor disconnect Disconnect time	tpor_captest tcaptst_time		950 1.5		μs μs	(7,8) (7,8)

NOTES

- 1. Parameter tested 100% at final test. Temperature = -40°C, 25°C and 105°C, $V_{BUS_{1}} = 8$ V, Unless otherwise stated.
- 2. Not Applicable.
- 3. Parameter verified by pass/fail testing at final test
- 4. Parameter verified by pass/fail testing at final test during safe launch.
- 5. Parameter verified by qualification testing.
- 6. Parameter verified by characterization.
- 7. Functionality guaranteed by modeling, simulation and/or design verification. Circuit integrity assured through IDDQ and scan testing. Timing is determined by internal system clock frequency.
- 8. Parameter verified by functional evaluation.
- 9. Parameter verified by simulation.
- 10. Not Applicable.
- 11. Thermal resistance between the die junction and the exposed pad; cold plate is attached to the exposed pad.
- * Indicates critical characteristic.

3 Functional Description

3.1 User-accessible data array

A user-accessible data array allows for each device to be customized. The array consists of an OTP factory-programmable block, an OTP user-programmable block, and read-only registers for data and device status. The OTP blocks incorporate independent data verification (reference Section 3.2). Portions of the factory-programmable array are reserved for factory-programmed trim values.

Byte	Pagiotar		Bit Fu	nction		Bit Function			Tuno	
Addr	Register	7	6	5	4	3	2	1	0	туре
\$00	ICTYPEID	0	0	0	0	0	0	0	1	R
\$01	ICMFGID	0	0	0	0	0	0	1	0	R
\$02	ICREVID	0	0	1	ICREVID[4]	0	0	0	0	R
\$03	MODTYPE	0	0	0	0	0	MODTYPE[2]	MODTYPE[1]	MODTYPE[0]	U,R
\$04	MODMFGID	0	0	0	0	0	MODMFGID[2]	MODMFGID[1]	MODMFGID[0]	U,R
\$05	MODREV	0	0	0	0	0	MODREV[2]	MODREV[1]	MODREV[0]	U,R
\$06	USERID1	USERID1[7]	USERID1[6]	USERID1[5]	USERID1[4]	USERID1[3]	USERID1[2]	USERID1[1]	USERID1[0]	U,R
\$07 - \$08	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	R
\$09	PN	PN[7]	PN[6]	PN[5]	PN[4]	PN[3]	PN[2]	PN[1]	PN[0]	F,R
\$0A	SN0	SN[7]	SN[6]	SN[5]	SN[4]	SN[3]	SN[2]	SN[1]	SN[0]	F,R
\$0B	SN1	SN[15]	SN[14]	SN[13]	SN[12]	SN[11]	SN[10]	SN[9]	SN[8]	F,R
\$0C	SN2	SN[23]	SN[22]	SN[21]	SN[20]	SN[19]	SN[18]	SN[17]	SN[16]	F,R
\$0D	SN3	SN[31]	SN[30]	SN[29]	SN[28]	SN[27]	SN[26]	SN[25]	SN[24]	F,R
\$0E - \$0F	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	R
\$10	DSIREV	0	0	0	0	0	0	0	1	R
\$11	PHYSADDR	0	0	0	0	PADDR[3]	PADDR[2]	PADDR[1]	PADDR[0]	U,R/ W
\$12	BDM_CFG	0	0	0	0	0	0	0	BDM_EN	R/W
\$13	CRM_CFG	0	0	0	CK_CAL_RST	CRM_PER[1]	CRM_PER[0]	CK_CAL_EN	SS_EN	R/W
\$14	PDCM_CFG	0	0	0	0	0	0	DATALENGTH	STATLENGTH	R/W
\$15	PDCM_EN	PDCM_EN	0	0	0	0	0	0	0	R/W
\$16	CHIPTIME	0	0	0	0	0	CHIPTIME[2]	CHIPTIME[1]	CHIPTIME[0]	R/W
\$17	PDCM_PER	0	0	0	0	0	PDCM_PER[2]	PDCM_PER[1]	PDCM_PER[0]	R/W
\$18	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	R/W
\$19	PDCM_RSPST_L	PDCM_RSPST[7]	PDCM_RSPST[6]	PDCM_RSPST[5]	PDCM_RSPST[4]	PDCM_RSPST[3]	PDCM_RSPST[2]	PDCM_RSPST[1]	PDCM_RSPST[0]	R/W
\$1A	PDCM_RSPST_H	0	0	0	0	PDCM_RSPST[11]	PDCM_RSPST[10]	PDCM_RSPST[9]	PDCM_RSPST[8]	R/W
\$1B	PDCM_CMD_B_L	PDCM_CMD_B[7]	PDCM_CMD_B[6]	PDCM_CMD_B[5]	PDCM_CMD_B[4]	PDCM_CMD_B[3]	PDCM_CMD_B[2]	PDCM_CMD_B[1]	PDCM_CMD_B[0]	R/W
\$1C	PDCM_CMD_B_H	0	0	0	0	PDCM_CMD_B[11]	PDCM_CMD_B[10]	PDCM_CMD_B[9]	PDCM_CMD_B[8]	R/W
\$1D	SOURCEID	0	0	0	0	SOURCEID[3]	SOURCEID[2]	SOURCEID[1]	SOURCEID[0]	R/W
\$1E	BUSSW_CTRL	0	0	0	0	0	0	0	BUSSW_CTRL	R/W
\$1F	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	R
\$20	DEVLOCK	LOCK_U	0	0	0	0	0	0	0	U,R
\$21	DEVSTAT	RESERVED	DEVRES	OSCTRAIN_ERR	BUSSW	TESTMODE	ST_ACTIVE	OFFSET_ERR	OC_INIT	R
\$22	DEVSTAT2	F_OTP_ERR	U_OTP_ERR	U_RW_ERR	U_UNLOCKED	RESERVED	ST_INCMPLT	VBUF_UV_ERR	BUSI_UV_ERR	R
\$23	ST_CONTROL	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	ST_5_PTRN	ST_A_PTRN	SELFTEST	R/W
\$24	WRITE_NVM_EN	0	0	0	0	0	0	WR_NVM_EN[1]	WR_NVM_EN[0]	R/W
\$25	C_CRMCRCPLY	C_CRMCRCPLY[7]	C_CRMCRCPLY[6]	C_CRMCRCPLY[5]	C_CRMCRCPLY[4]	C_CRMCRCPLY[3]	C_CRMCRCPLY[2]	C_CRMCRCPLY[1]	C_CRMCRCPLY[0]	R/W
\$26	R_CRMCRCPLY	R_CRMCRCPLY[7]	R_CRMCRCPLY[6]	R_CRMCRCPLY[5]	R_CRMCRCPLY[4]	R_CRMCRCPLY[3]	R_CRMCRCPLY[2]	R_CRMCRCPLY[1]	R_CRMCRCPLY[0]	R/W
\$27	PDCMCRCPLY	PDCMCRCPLY[7]	PDCMCRCPLY[6]	PDCMCRCPLY[5]	PDCMCRCPLY[4]	PDCMCRCPLY[3]	PDCMCRCPLY[2]	PDCMCRCPLY[1]	PDCMCRCPLY[0]	R/W
\$28 - \$2F	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	R
\$30	ACC_FCTCFG	0	PCM	AXIS	RNG[4]	RNG[3]	RNG[2]	RNG[1]	RNG[0]	F,R
\$31	ACC_STDATA	ACC_ST[7]	ACC_ST[6]	ACC_ST[5]	ACC_ST[4]	ACC_ST[3]	ACC_ST[2]	ACC_ST[1]	ACC_ST[0]	F,R
\$32	ACC_CFG	LPF[3]	LPF[2]	LPF[1]	LPF[0]	SD	OC_FILT[2]	OC_FILT[1]	OC_FILT[0]	R/W
\$33	ACC_DATAL	ACC_D[7]	ACC_D[6]	ACC_D[5]	ACC_D[4]	ACC_D[3]	ACC_D[2]	ACC_D[1]	ACC_D[0]	R
\$34	ACC_DATAH	ACC_D[15]	ACC_D[14]	ACC_D[13]	ACC_D[12]	ACC_D[11]	ACC_D[10]	ACC_D[9]	ACC_D[8]	R
\$35	ACC_STAT	0	0	0	0	0	ST_ACTIVE	OFFSET_ERR	OC_INIT	R

Type codes:

F: Freescale programmed OTP location.

U: User programmable OTP location.

R: Readable register.

R/W: User writable register.

3.1.1 IC Type register

The IC Type register is a read-only register which contains the IC type as defined in the DSI3 standard.

Table 5. IC Type register

Loca	ation		Bit									
Address	Register	7	6	5	4	3	2	1	0			
\$00	ICTYPEID	0	0	0	0	0	0	0	1			

3.1.2 IC Manufacturer Identification register

The IC Manufacturer Identification register is a read-only register which contains the IC manufacturer ID as defined in the DSI3 standard.

Table 6. IC Manufacturer Identification register

Loca	ation		Bit									
Address	Register	7	6	5	4	3	2	1	0			
\$01	ICMFGID	0	0	0	0	0	0	1	0			

3.1.3 IC Manufacturer Revision register

The IC revision register is a read-only register which contains the IC revision as defined in the DSI3 standard. ICREVID[4] is set to '0' for the MMAx7xxJWR2 part numbers and set to '1' for the MMAx7xxWR2 part numbers.

Table 7. IC Manufacturer Revision register

Loca	ation		Bit									
Address	Register	7	6	5	4	3	2	1	0			
\$02	ICREVID	0	0	1	ICREVID[4]	0	0	0	0			

3.1.4 Module Type register (MODTYPE)

The module type register is a user programmed OTP register which contains user specific module identification information as defined in the DSI3 Standard. The register is included in the user programmed OTP verification described in Section 3.2.

Table 8. Module Type register

Loc	ation					Bit			
Address	Register	7	6	5	4	3	2	1	0
\$03	MODTYPE	0	0	0	0	0	MODTYPE[2]	MODTYPE[1]	MODTYPE[0]
Factory	Factory Default		0	0	0	0	0	0	0

3.1.5 Module Manufacturer ID register (MODMFGID)

The module manufacturer identification register is a user-programmed OTP register which contains user specific module identification information as defined in the DSI3 Standard. The register is included in the user programmed OTP verification described in Section 3.2.

Table 9. Module Manufacturer ID register

Lo	cation					Bit			
Address Register		7	6	5	4	3	2	1	0
\$04 MODMFGI		0	0	0	0	0	MODMFGID[2]	MODMFGID[1]	MODMFGID[0]
Factory Default		0	0	0	0	0	0	0	0

3.1.6 Module Revision register (MODREV)

The Module Revision register is a user programmed OTP register which contains user specific module identification information as defined in the DSI3 Standard. The register is included in the user programmed OTP verification described in Section 3.2.

Loca	ation		Bit										
Address	Register	7	6	5	4	3	2	1	0				
\$05	MODREV	0	0	0	0	0	MODREV[2]	MODREV[1]	MODREV[0]				
Factory Default		0	0	0	0	0	0	0	0				

Table 10. Module Revision register (MODREV)

3.1.7 User ID 1 registers (USERID1)

User ID registers 1 is a user programmable OTP register which contains user specific information. The bits have no impact on the device performance. The register is included in the user programmed OTP verification described in Section 3.2.

Table 11. User ID 1 registers

Loca	ation		Bit										
Address	Register	7	6	5	4	3	2	1	0				
\$06	USERID1	USERID1[7]	USERID1[6]	USERID1[5]	USERID1[4]	USERID1[3]	USERID1[2]	USERID1[1]	USERID1[0]				
Factory	Default	0	0	0	0	0	0	0	0				

3.1.8 Part Number register

The Part Number register is a factory-programmed OTP register which includes the numeric portion of the device part number. The register is included in the factory-programmed OTP verification described in Section 3.2. Beyond this, the contents of the part number register have no impact on device operation or performance.

Table 12. Part Number register

Loca	ation		Bit									
Address	Register	7	6	5	4	3	2	1	0			
\$09	PN	PN[7]	PN[6]	PN[5]	PN[4]	PN[3]	PN[2]	PN[1]	PN[0]			
Factory Default		N/A										

PN Regi	ster Value	Range	Transducer
Decimal	HEX	(g)	Transducer
2	0x02	25	Medium-g Lateral
12	0x0C	125	High-g Lateral
18	0x12	187	High g Lateral
25	0x19	250	High-g Lateral / High-g Vertical
37	0x25	375	High-g Lateral

3.1.9 Device Serial Number registers

The serial number registers are factory-programmed OTP registers which include a unique serial number and lot number combination for each device, regardless of range or axis of sensitivity. Serial numbers begin at 1 for all produced devices in each lot and are sequentially assigned. Lot numbers begin at 1 and are sequentially assigned. No lot will contain more devices than can be uniquely identified by the 13-bit serial number. Depending on lot size and quantities, all possible lot numbers and serial numbers may not be assigned. The serial number registers are included in the factory-programmed OTP verification described in Section 3.2. Beyond this, the contents of the serial number registers have no impact on device operation or performance.

Loca	ation				E	Bit			
Address	Register	7	6	5	4	3	2	1	0
\$0A	SN0	SN[7]	SN[6]	SN[5]	SN[4]	SN[3]	SN[2]	SN[1]	SN[0]
\$0B	SN1	SN[15]	SN[14]	SN[13]	SN[12]	SN[11]	SN[10]	SN[9]	SN[8]
\$0C	SN2	SN[23]	SN[22]	SN[21]	SN[20]	SN[19]	SN[18]	SN[17]	SN[16]
\$0D	SN3	SN[31]	SN[30]	SN[29]	SN[28]	SN[27]	SN[26]	SN[25]	SN[24]
Factory	Default	N/A							

Table 13. Device Serial Number registers

The serial number is composed of the following information:

Bit range	Content
SN[12:0]	Serial Number
SN[31:13]	Lot Number

3.1.10 DSI Protocol Revision register (DSI_REV)

The factory-configuration register is a read-only register which contains the DSI revision supported, as specified in the DSI3 standard. The protocol revision value for DSI3 is \$01.

Table 14. DSI Protocol Revision register

Loca	ation	Bit							
Address	Register	7	6	5	4	3	2	1	0
\$10	DSIREV	0	0	0	0	0	0	0	1

3.1.11 Physical Address register (PHYSADDR)

The physical address register is a user programmed OTP register which contains the physical address of the slave.

If the physical address is zero, the address is assigned either during Discovery Mode as described in Section 4.1.3 or during Command and Response Mode as described in Section 4.1.2.

If the physical address is non-zero, the device ignores Discovery Mode and uses the programmed physical address for Command and Response Mode, as described in Section 4.2. The physical address register value can be changed by a Command and Response Mode register write command. However, if the LOCK_U bit is set, the value will always be reset to the OTP array value after a reset.

The OTP register value is included in the user programmed OTP verification described in Section 3.2. The value is also stored in a secondary register that can be written as described above. This secondary register is included in the read/write array verification described in Section 3.2.

Loc	ation				В	Bit			
Address	Register	7	6	5	4	3	2	1	0
\$11	PHYSADDR	0	0	0	0	PADDR[3]	PADDR[2]	PADDR[1]	PADDR[0]
Factory	Default	0	0	0	0	0	0	0	0

3.1.12 DSI3 Background Diagnostic Mode Configuration register (BDM_CFG)

The DSI3 Background Diagnostic Mode configuration register is a user programmed read/write register which contains user specific configuration information for DSI3 Background Diagnostic Mode. The register is included in the read/write array verification described in Section 3.2. Reference Section 4.3 for details regarding Background Diagnostic Mode.

Table 16.	DSI3 B	ackaround	Diagnostic	Mode	Confid	uration	register
14010 10.	D010 D	aongrouna	Blughootio	mouc	0 011113	garation	regioter

Loc	ation				В	Bit			
Address	Register	7	6	5	4	3	2	1	0
\$12	BDM_CFG	0	0	0	0	0	0	0	BDM_EN
Factory	Default	0	0	0	0	0	0	0	0

3.1.12.1 Background Diagnostic Mode Enable (BDM_EN)

The Background Diagnostic Mode enable bit enables Background Diagnostic Mode as described below and in Section 3.1.14. Reference Section 4.3 for details regarding Background Diagnostic Mode.

BDM_EN	BDM command fragment length
0	Disabled
1	4

3.1.13 DSI3 Command and Response Mode Configuration register (CRM_CFG)

The DSI3 Command and Response Mode configuration register is a user programmed read/write register which contains user specific configuration information for DSI3 Command and Response Mode. The register is included in the read/write array verification described in Section 3.2.

Table 17. DSI3 Command and Response Mode Configuration register

Loca	ation	Bit							
Address	Register	7	6	5	4	3	2	1	0
\$13	CRM_CFG	0	0	0	CK_CAL_RST	CRM_PER[1]	CRM_PER[0]	CK_CAL_EN	SS_EN
Factory	Default	0	0	0	0	0	0	0	0

3.1.13.1 Clock Calibration Value Reset (CK_CAL_RST)

The clock calibration reset bit controls the state of the oscillator training when the CK_CAL_EN bit is cleared as described in the table in Section 3.1.13.3. Reference Section 3.4.1 for details regarding oscillator training.

3.1.13.2 Command and Response Mode Period (CRM_PER[1:0])

The Command and Response Mode Period bits set the period for Command and Response Mode commands in increments of the Periodic Data Collection Mode Period (PDCM_PER). This value is only necessary for oscillator training and is only used if the CK_CAL_EN bit is set in the CRM_CFG register. Command and Response Mode commands will be decoded and responded to regardless of the value of this register as long as the general Command and Response Mode timing parameters specified in Section 2.6 are met. Reference Section 3.4.1 for details regarding oscillator training.

CRM_PER[1]	CRM_PER[0]	Command and Response Mode period (Multiples of the Periodic Data Collection Mode period)
0	0	1
0	1	2
1	0	4
1	1	8

3.1.13.3 Clock Calibration Enable (CK_CAL_EN)

The clock calibration enable bit enables oscillator training over the DSI communication interface. Reference Section 3.4.1 for details regarding oscillator training.

CK_CAL_EN	CK_CAL_RST	Oscillator training
0	0	The oscillator value is maintained at the last trained value prior to clearing the CK_CAL_RST bit.
0	1	The oscillator value is reset to the untrained value with a tolerance specified in Section 2.8.
1	х	Oscillator is trained as specified in Section 3.4.1

3.1.13.4 Simultaneous Sampling Enable (SS_EN)

The simultaneous sampling enable bit selects between one of two data latency methods. Reference Section 3.7 for details regarding sample timing.

SS_EN	Data latency
0	Synchronous Sampling Mode: Latency relative to transmission start time (PDCM_RSPST)
1	Simultaneous Sampling Mode: Latency relative to the start of the Periodic Data Collection Mode command (falling edge)

3.1.14 Periodic Data Collection Mode Enable register (PDCM_EN)

The Periodic Data Collection Mode register is a read/write register which contains the Periodic Data Collection Mode Enable bit. The register is included in the read/write array verification described in Section 3.2.

Table 18. Periodic Data Collection Mode Enable register

Loca	ation				В	lit			
Address	Register	7	6	5	4	3	2	1	0
\$15	PDCM_EN	PDCM_EN	0	0	0	0	0	0	0
Factory	Default	0	0	0	0	0	0	0	0

The Periodic Data Collection Mode Enable bit enables Periodic Data Collection Mode as described in Section 4.3. The PDCM_EN bit can be set by receiving the Enter PDCM command in Command and Response Mode, or by a Command and Response Mode register write command. Once Periodic Data Collection Mode is enabled, the registers listed in Section 3.2.3 are locked and the user array read/write register array verification is enabled.

Once set, the PDCM_EN bit can only be cleared by a device reset.

PDCM_EN	BDM_EN	Command and Response Mode	Periodic Data Collection Mode	Background Diagnostic Mode
0	0	Enabled	Disabled	Disabled
0	1	Enabled	Disabled	Disabled
1	0	Disabled	Enabled	Disabled
1	1	Disabled	Enabled	Enabled

3.1.15 DSI3 Periodic Data Collection Mode Configuration registers (PDCM_CFG1, PDCM_CFG2)

The DSI3 Periodic Data Collection Mode configuration registers are user programmed read/write registers which contain user specific configuration information for DSI3 Periodic Data Collection Mode. The registers are included in the read/write array verification described in Section 3.2.

	Location	Bit							
Addres s	Register	7	6	5	4	3	2	1	0
\$14	PDCM_CFG	0	0	0	0	0	0	DATALENGTH	STATLENGTH
\$16	CHIPTIME	0	0	0	0	0	CHIPTIME[2]	CHIPTIME[1]	CHIPTIME[0]
\$17	PDCM_PER	0	0	0	0	0	PDCM_PER[2]	PDCM_PER[1]	PDCM_PER[0]
\$18	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED
\$19	PDCM_RSPST_L	PDCM_RSPST[7]	PDCM_RSPST[6]	PDCM_RSPST[5]	PDCM_RSPST[4]	PDCM_RSPST[3]	PDCM_RSPST[2]	PDCM_RSPST[1]	PDCM_RSPST[0]
\$1A	PDCM_RSPST_H	0	0	0	0	PDCM_RSPST[11]	PDCM_RSPST[10]	PDCM_RSPST[9]	PDCM_RSPST[8]
\$1B	PDCM_CMD_B_L	PDCM_CMD_B[7]	PDCM_CMD_B[6]	PDCM_CMD_B[5]	PDCM_CMD_B[4]	PDCM_CMD_B[3]	PDCM_CMD_B[2]	PDCM_CMD_B[1]	PDCM_CMD_B[0]
\$1C	PDCM_CMD_B_H	0	0	0	0	PDCM_CMD_B[11]	PDCM_CMD_B[10]	PDCM_CMD_B[9]	PDCM_CMD_B[8]
Fa	actory Default	0	0	0	0	0	0	0	0

3.1.15.1 Data Field Length (DATALENGTH)

The data field length bits set the data field length in the Periodic Data Collection Mode response as described below. The sensitivity of the data is the same for both the 10-bit and 14-bit data lengths. If the 14-bit data length is selected, four additional bits of range are transmitted. These additional four bits of range are intended for test use only and are not covered by the specifications listed in Section 2.

DATALENGTH	Data Length
0	10 Bits
1	14 Bits

3.1.15.2 Status Field Length (STATLENGTH)

The status field length bits set the status field length in the Periodic Data Collection Mode response as described below. Reference Section 4.3.2.2 for details regarding the Periodic Data Collection Mode status field.

STATLEN	Status Field Length (Bits)	Data Transmitted
0	4	Reference Section 4.3.2.2
1	0	N/A

3.1.15.3 Chip time (CHIPTIME)

The DSI3 Periodic Data Collection Mode configuration chip time bits set the chip time for Periodic Data Collection Mode as described below.

CHIPTIME[2]	CHIPTIME[1]	CHIPTIME[0]	Chip time
0	0	0	3.0 µs
0	0	1	3.5 μs
0	1	0	4.0 μs
0	1	1	4.5 μs
1	0	0	5.0 μs
1	0	1	5.5 μs
1	1	0	6.0 μs
1	1	1	6.5 μs

3.1.15.4 Periodic Data Collection Mode Period (PDCM_PER[3:0])

The Periodic Data Collection Mode period selection bits set the period data collection mode period to be used by the DSI master as shown in the table below. This value is only necessary for oscillator training and is only used if the CK_CAL_EN bit is set in the CRM_CFG register. Periodic Data Collection Mode and Background Diagnostic Mode commands will be decoded and responded to regardless of the value of this register as long as the general Periodic Data Collection Mode timing parameters specified in Section 2.6 are met. Reference Section 3.4.1 for details regarding oscillator training.

PDCM_PER[2]	PDCM_PER[1]	PDCM_PER[0]	Periodic Data Collection Mode Period
0	0	0	500 μs
0	0	1	125 µs
0	1	0	250 μs
0	1	1	333 µs
1	0	0	500 μs
1	0	1	1000 μs
1	1	0	2000 μs
1	1	1	4000 μs

3.1.15.5 Periodic Data Collection Mode Response Start Time (PDCM_RSPST[11:0])

The DSI3 Periodic Data Collection Mode Response Start Time bits set the Periodic Data Collection Mode response start time. The value is stored in 1 μ s increments, with zero as the default value of 20 μ s.

Care must be taken to prevent from programming response start times which cause data contention in the system.

PDCM_RSPST[11:0]	Periodic Data Collection Mode Response Start Time
0 - 20	20 µs
21 - 4095	PDCM response start = PDCM_RSPST x 1µs

3.1.15.6 Periodic Data Collection Mode Command Blocking time (PDCM_CMD_B[11:0])

The DSI3 Periodic Data Collection Mode command blocking time bits set the Periodic Data Collection Mode command blocking time. in 1µs increments, with zero as the default value of 450 µs. Reference Section 3.6.1 for details regarding the command receiver and command blocking.

Care must be taken to prevent from programming command blocking times which prevent proper command decoding in the system and to ensure proper sampling of the V_{HIGH} voltage. As shown in Section 3.6.1, Figure 29, The V_{HIGH} voltage is initially captured at the end of the command blocking time and then filtered. The user must ensure that the command blocking end time is set for a time when no command or response transmissions are occurring to provide the most stable BUS_I voltage.

PDCM_CMD_B[11:0]	Periodic Data Collection Mode Command blocking time
0	450 μs
Non-Zero	PDCM Command blocking time = PDCM_CMD_B x 1 μ s

3.1.16 Source Identification register (SOURCEID)

The source identification register is a user programmed read/write register which contains the source identification which will be used for Periodic Data Collection Mode as described in Section 4.3.2.2. The register is included in the read/write array verification described in Section 3.2. SOURCEID[3:0] is initialized to the values stored in PADDR[3:0] after reset.

Table 19	Source	Identification	register
----------	--------	----------------	----------

Location Bit									
Address	Register	7	6	5	4	3	2	1	0
\$1D	SOURCEID	0	0	0	0	SOURCEID[3]	SOURCEID[2]	SOURCEID[1]	SOURCEID[0]
Factory	/ Default	0	0	0	0	PADDR[3]	PADDR[2]	PADDR[1]	PADDR[0]

3.1.17 Bus Switch Control register (BUSSW_CTRL)

The bus switch control register is a user programmed read/write register which controls the state of the bus switch output driver. The register is included in the read/write array verification describe in Section 3.2.

Table 20. Bus Switch Control register

Location		Bit							
Address	Register	7	6	5	4	3	2	1	0
\$1E	BUSSW_CTRL	0	0	0	0	0	0	0	BUSSW_CTRL
Factory Default		0	0	0	0	0	0	0	0

The BUSSW_CTRL bit controls the state of the BUSSW pin.

BUSSW_CTRL	BUSSW Pin Sate
0	High impedance An External Pullup is required if an external switch is connected
1	Output Actively Driven Low

3.1.18 Device Lock register (DEVLOCK)

The device lock register is a user programmed OTP register which contains the LOCK_U bit. The register is included in the user programmed OTP verification describe in Section 3.2. The LOCK_U bit allows the user to prevent writes to the user configuration array once OTP programming is complete. If the LOCK_U bit is written to '1' when an "Execute Programming of NVM" command is executed, the LOCK_U OTP bit will be programmed. Upon completion of the OTP programming, future OTP writes to both the OTP array and the mirror registers for the array are prevented and the User Programmable OTP Array Verification is activated. The exception to this is the PADDR[3:0] bits. Once the LOCK_U bit is set, the PADDR[3:0] OTP bits cannot be written. However, the mirror register bits for PADDR[3:0] can be written to allow changes to the physical address through Command and Response Mode.

Table 21. Device Lock register

Location		Bit							
Address	Register	7	6	5	4	3	2	1	0
\$20	DEVLOCK	LOCK_U	0	0	0	0	0	0	0
Factory Default		0	0	0	0	0	0	0	0

3.1.19 Device Status registers (DEVSTAT, DEVSTAT2)

The device status registers are read-only registers which contain device status information.

Table 22. Device Status registers

Location		Bit							
Address	Register	7	6	5	4	3	2	1	0
\$21	DEVSTAT	RESERVED	DEVRES	OSCTRAIN_ERR	BUSSW	TESTMODE	ST_ACTIVE	OFFSET_ERR	OC_INIT
\$22	DEVSTAT2	F_OTP_ERR	U_OTP_ERR	U_RW_ERR	U_UNLOCKED	RESERVED	ST_INCMPLT	VBUF_UV_ERR	BUSIN_UV_ERR

3.1.19.1 Device Reset (DEVRES)

The device reset bit is set following a device reset. The device reset bit is cleared only by a read of the DEVSTAT register.

DEVRES	Error Condition	
0	Normal operation	
1	Device reset occurred	

3.1.19.2 Oscillator Training Error (OSCTRAIN_ERR)

The oscillator training error bit is set if an error detected in either the oscillator training settings, or the master communication timing. Reference Section 3.4.2.

OSCTRAIN_ERR	Error Condition
0	No error detected
1	Oscillator Training Error. Reference Section 3.4.2

3.1.19.3 Bus Switch Status (BUSSW)

The Bus Switch status bit is set if the bus switch output pin is activated.

BUSSW	BUSSW Pin State
0	BUSSW pin is inactive
1	BUSSW pin is active

3.1.19.4 Test Mode (TESTMODE)

The test mode bit is set if the device is in test mode.

TESTMODE	Operating Mode
0	Test Mode is not active
1	Test Mode is active

3.1.19.5 Self-Test Active (ST_ACTIVE)

The self-test active bit is set if any of the self-test bits in the ST_CONTROL register are set.

ST_ACTIVE	Condition
0	ST_5_PTRN & ST_A_PTRN & SELFTEST = 0
1	ST_5_PTRN ST_A_PTRN SELFTEST = 1

3.1.19.6 Offset Error Flag (OFFSET_ERR)

The offset error flag is set if the acceleration signal reaches the offset limit.

OFFSET_ERR	Error Condition
0	No error detected
1	Offset error detected

3.1.19.7 Offset Cancellation Init Status Flag (OC_INIT)

The offset cancellation initialization status bit is set once the offset cancellation initialization process is complete, and the filter has switched to normal mode.

OC_INIT	Error Condition		
0	Offset Cancellation in initialization		
1	Offset Cancellation initialization complete		

3.1.19.8 Freescale OTP Array Error (F_OTP_ERR)

The factory OTP array error bit is set if a register data fault is detected in the factory OTP array. A device reset is required to clear the error.

F_OTP_ERR	Error Condition
0	No error detected
1	Error Detected in the Factory OTP Array

3.1.19.9 User OTP Array Error (U_OTP_ERR)

The user OTP array error bit is set if a register data fault is detected in the user OTP array. A device reset is required to clear the error.

U_OTP_ERR	Error Condition
0	No error detected
1	Error Detected in the User OTP Array

3.1.19.10 User Read/Write Array Error (U_RW_ERR)

The user read/write array error bit is set if a register data fault is detected in the user read/write array. A device reset is required to clear the error.

U_RW_ERR	Error Condition
0	No error detected
1	Error Detected in the User Read/Write Array

3.1.19.11 User OTP Array Unlocked (U_UNLOCKED)

The user OTP array unlocked bit is set if LOCK_U bit in the DEVLOCK register is not set, indicating that the user array is not locked.

U_UNLOCKED Condition	
0	User Array is Locked
1	User Array is not Locked

3.1.19.12 Self-Test Incomplete (ST_INCMPLT)

The self-test incomplete bit is set after a device reset and is only cleared when the SELFTEST bit is written to a '1' through Command and Response Mode.

ST_INCMPLT	Condition
0	Self-test has been activated since the last Reset
1	Self-test has not been activated since the last Reset

3.1.19.13 V_{BUF} Undervoltage Error (VBUF_UV_ERR)

The V_{BUF} undervoltage error bit is set if the VBUF voltage falls below the voltage specified in Section 2.3. Reference Section 3.3 for details on the V_{BUF} undervoltage monitor. The VBUF_UV_ERR bit is cleared on a read of the DEVSTAT2 register.

VBUF_UV_ERR	Error Condition
0	No error detected
1	VBUF Voltage Low

3.1.19.14 BUS IN Undervoltage Error (BUSI_UV_ERR)

The BUS IN undervoltage error bit is set if the BUS_I voltage falls below the voltage specified in Section 2.3. Reference Section 3.3 for details on the BUS IN undervoltage monitor. The BUSI_UV_ERR bit is cleared on a read of the DEVSTAT2 register.

BUSI_UV_ERR	Error Condition			
0	No error detected			
1	BUS_I Voltage Low			

3.1.20 Self-Test Control register (ST)

The self-test control register is a user programmed read/write register which contains user specific device configuration information. The register is included in the read/write array verification described in Section 3.2.

Table 23. Self-Test Control register

L	ocation	Bit							
Address	Register	7	6	5	4	3	2	1	0
\$23	ST_CONTROL	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	ST_PTRN_5	ST_PTRN_A	SELFTEST
Fact	tory Default	0	0	0	0	0	0	0	0

3.1.20.1 Self-Test Pattern Write Bits (ST_PTRN_5, ST_PTRN_A)

The self-test pattern write bits inhibit DSP writes to the ACC_DATAH and ACC_DATAL registers and forces a write of specific values to the registers when set. When cleared, DSP writes to the ACC_DATAH and ACC_DATAL registers resume as specified. These bits are automatically cleared when the PDCM bit is set.

ST_PTRN_A	ST_PTRN_5	Function
0	0	DSP writes to the ACC_DATAH and ACC_DATAL registers as specified
0	1	0x5555 written to ACC_DATAH and ACC_DATAL. DSP write to registers inhibited.
1	0	0xAAAA written to ACC_DATAH and ACC_DATAL. DSP write to registers inhibited.
1	1	0xFFFF written to ACC_DATAH and ACC_DATAL. DSP write to registers inhibited.

3.1.20.2 Self-Test Control (SELFTEST)

The self-test control bit activates and deactivates self-test as described below. Reference Section 3.5.2 for details regarding self-test. This bit is automatically cleared when the PDCM bit is set.

Self-test	Function		
0	Self-test deactivated		
1	Self-test activated		

After a device reset, the ST_INCMPLT bit is set in the DEVSTAT2 register and the device status defaults to Self-test Activation Incomplete as defined in Section 4.3.2.2. The ST_INCMPLT bit will only be cleared by writing the SELFTEST bits to '1' through Command and Response Mode. If PDCM is entered without activating self-test, the status bits will include the Self-test Activation Incomplete" status until a device reset.

If both the SELFTEST bit and one of the Self-test Pattern Write bits are set, the self-test pattern data will be written to the ACC_DATAH and ACC_DATAL registers. However, the transducer self-test will still be activated as described in Section 3.5.2.