# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





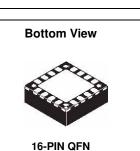
Document Number: MMA52xxLW Rev. 1, 03/2014

#### **VRoHS**



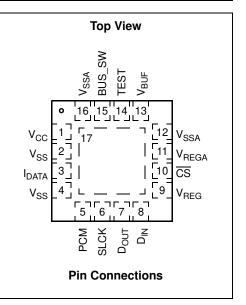
# Xtrinsic MMA52xxLW PSI5 Inertial Sensor

The MMA52xxLW family, a SafeAssure solution, includes the AKLV27 and PSI5 Version 1.3 compatible overdamped X-axis satellite accelerometers.


#### Features

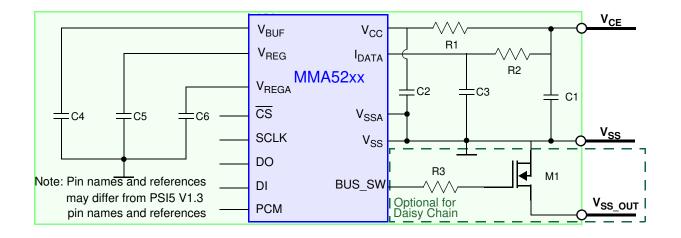
- ±60g to ±480g Full-Scale Range
- Selectable 400 Hz, 3 Pole, or 4 pole Low-Pass Filter
- Single Pole High Pass Filter with Fast Startup and Output Rate Limiting
- PSI5 Version 1.3 Compatible
  - PSI5-P10P-500/3L Compatible
  - Programmable Time Slots with 0.5 μs Resolution
  - Selectable Baud Rate: 125 kBaud or 190.5 kBaud
  - Selectable Data Length: 8 or 10 bits
  - Selectable Error Detection: Even Parity, or 3-bit CRC
  - Optional Daisy Chain with External Low-Side Switch
  - Two-Wire Programming Mode
- 16 μs Internal Sample Rate, with Interpolation to 1 μs
- Pb-Free 16-Pin QFN, 6 x 6 Package
- Qualified AECQ100, Revision G, Grade 1 (-40°C to +125°C) (<u>http://www.aecouncil.com/</u>)

#### **Typical Applications**


· Airbag Front and Side Crash Detection

|             | OR   | DERING INFO | RMATION |             |
|-------------|------|-------------|---------|-------------|
| Device      | Axis | Range       | Package | Shipping    |
| MMA5206LW   | Х    | 60g         | 2086-01 | Tubes       |
| MMA5212LW   | Х    | 120g        | 2086-01 | Tubes       |
| MMA5224LW   | Х    | 240g        | 2086-01 | Tubes       |
| MMA5248LW   | Х    | 480g        | 2086-01 | Tubes       |
| MMA5206LWR2 | Х    | 60g         | 2086-01 | Tape & Reel |
| MMA5212LWR2 | Х    | 120g        | 2086-01 | Tape & Reel |
| MMA5224LWR2 | Х    | 240g        | 2086-01 | Tape & Reel |
| MMA5248LWR2 | Х    | 480g        | 2086-01 | Tape & Reel |

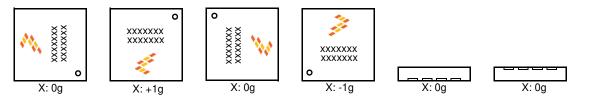



MMA52xxLW












#### Figure 1. Application Diagram

**Table 1. External Component Recommendations** 

| Ref Des    | Туре             | Description                   | Purpose                                                     |
|------------|------------------|-------------------------------|-------------------------------------------------------------|
| C1         | Ceramic          | 2.2 nF, 10%, 50V minimum, X7R | $\rm V_{\rm CC}$ Power Supply Decoupling and Signal Damping |
| C3         | Ceramic          | 470 pF, 10%, 50V minimum, X7R | I <sub>DATA</sub> Filtering and Signal Damping              |
| C2         | Ceramic          | 15 nF, 10%, 50V minimum, X7R  | V <sub>CC</sub> Power Supply Decoupling                     |
| C4, C5, C6 | Ceramic          | 1 µF, 10%, 10V minimum, X7R   | Voltage Regulator Output Capacitor(s)                       |
| R1         | General Purpose  | 82Ω, 5%, 200 PPM              | V <sub>CC</sub> Filtering and Signal Damping                |
| R2         | General Purpose  | 27Ω, 5%, 200 PPM              | I <sub>DATA</sub> Filtering and Signal Damping              |
| R3         | General Purpose  | 20 kΩ, 5%, 200 PPM            | Gate Resistor for External Low-Side Daisy Chain FET         |
| M1         | N-Channel MOSFET | _                             | Low-Side Daisy Chain Transistor                             |



EARTH GROUND





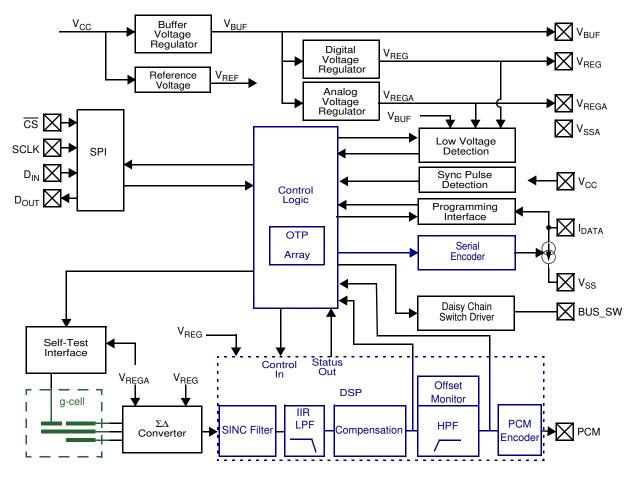
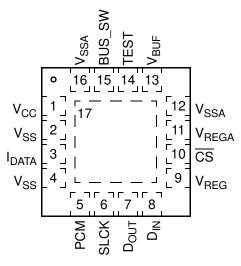
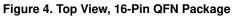





Figure 3. Internal Block Diagram



# 1 Pin Connections





#### Table 2. Pin Description

| Pin | Pin<br>Name       | Formal Name              | Definition                                                                                                                                                                                                                                                                                                                         |
|-----|-------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | V <sub>CC</sub>   | Supply                   | This pin is connected to the PSI5 power and data line through a resistor and supplies power to the device. An external capacitor must be connected between this pin and $V_{SS}$ . Reference Figure 1.                                                                                                                             |
| 2   | V <sub>SS</sub>   | Digital GND              | This pin is the power supply return node for the digital circuitry.                                                                                                                                                                                                                                                                |
| 3   | I <sub>DATA</sub> | Response<br>Current      | This pin is connected to the PSI5 power and data line through a resistor and modulates the response current for PSI5 com-<br>munication. Reference Figure 1.                                                                                                                                                                       |
| 4   | V <sub>SS</sub>   | Digital GND              | This pin is the power supply return node for the digital circuitry.                                                                                                                                                                                                                                                                |
| 5   | PCM               | PCM<br>Output            | This pin provides a 4 MHz PCM signal proportional to the acceleration data for test purposes. The output can be enabled via OTP. Reference Section 3.5.3.7. If unused, this pin must be left unconnected.                                                                                                                          |
| 6   | SCLK              | SPI Clock                | This input pin provides the serial clock to the SPI port for test purposes. An internal pulldown device is connected to this pin. This pin must be grounded or left unconnected in the application.                                                                                                                                |
| 7   | D <sub>OUT</sub>  | SPI Data Out             | This pin functions as the serial data output from the SPI port for test purposes. This pin must be left unconnected in the appli-<br>cation.                                                                                                                                                                                       |
| 8   | D <sub>IN</sub>   | SPI Data In              | This pin functions as the serial data input to the SPI port for test purposes. An internal pulldown device is connected to this pin. This pin must be grounded or left unconnected in the application.                                                                                                                             |
| 9   | V <sub>REG</sub>  | Digital<br>Supply        | This pin is connected to the power supply for the internal digital circuitry. An external capacitor must be connected between this pin and $V_{SS}$ . Reference Figure 1.                                                                                                                                                          |
| 10  | CS                | Chip Select              | This input pin provides the chip select to the SPI port for test purposes. An internal pullup device is connected to this pin. This pin must be left unconnected in the application.                                                                                                                                               |
| 11  | V <sub>REGA</sub> | Analog<br>Supply         | This pin is connected to the power supply for the internal analog circuitry. An external capacitor must be connected between this pin and $V_{SSA}$ . Reference Figure 1.                                                                                                                                                          |
| 12  | VSSA              | Analog GND               | This pin is the power supply return node for the analog circuitry.                                                                                                                                                                                                                                                                 |
| 13  | V <sub>BUF</sub>  | Power<br>Supply          | This pin is connected to a buffer regulator for the internal circuitry. The buffer regulator supplies both the analog ( $V_{REGA}$ ) and digital ( $V_{REG}$ ) supplies to provide immunity from EMC and supply dropouts on $V_{CC}$ . An external capacitor must be connected between this pin and $V_{SS}$ . Reference Figure 1. |
| 14  | TEST              | Test Pin                 | This pin is must be grounded or left unconnected in the application.                                                                                                                                                                                                                                                               |
| 15  | BUS_SW            | Bus Switch<br>Gate Drive | This pin is the drive for a low-side daisy chain switch. When daisy chain mode is enabled, this pin is connected to the gate of an n-channel FET which connects $V_{SS}$ to $V_{SS\_OUT}$ . Reference Figure 1. If unused, this pin must be left unconnected.                                                                      |
| 16  | VSSA              | Analog GND               | This pin is the power supply return node for the analog circuitry.                                                                                                                                                                                                                                                                 |
| 17  | PAD               | Die Attach Pad           | This pin is the die attach flag, and is internally connected to VSS. Reference Section 7 for die attach pad connection details.                                                                                                                                                                                                    |
|     | Corner<br>Pads    | Corner Pads              | The corner pads are internally connected to V <sub>SS</sub> .                                                                                                                                                                                                                                                                      |



#### **Electrical Characteristics** 2

#### 2.1 **Maximum Ratings**

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it.

| #                   | Rating                                                                                                                                                                                                                                                   | Symbol                                                                       | Value                           | Unit             |                          |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|------------------|--------------------------|
| 1<br>2<br>3         | Supply Voltage (V <sub>CC</sub> , I <sub>DATA</sub> )<br>Reverse Current $\leq$ 160 mA, t $\leq$ 80 ms<br>Continuous<br>Transient (< 10 µs)                                                                                                              | Vcc_rev<br>Vcc_max<br>Vcc_trans                                              | -0.7<br>+20.0<br>+25.0          | V<br>V<br>V      | (3)<br>(3)<br>(9)        |
| 4                   | V <sub>BUF,</sub> Test, BUS_SW                                                                                                                                                                                                                           |                                                                              | -0.3 to +4.2                    | V                | (3)                      |
| 5                   | V <sub>REG</sub> , V <sub>REGA,</sub> SCLK, CS, D <sub>IN</sub> , D <sub>OUT</sub> , PCM                                                                                                                                                                 |                                                                              | -0.3 to +3.0                    | V                | (3)                      |
| 6                   | Powered Shock (six sides, 0.5 ms duration)                                                                                                                                                                                                               | 9 <sub>pms</sub>                                                             | ±2000                           | g                | (3)                      |
| 7                   | Unpowered Shock (six sides, 0.5 ms duration)                                                                                                                                                                                                             | 9 <sub>shock</sub>                                                           | ±2500                           | g                | (3)                      |
| 8                   | Drop Shock (to concrete, tile or steel surface, 10 drops, any orientation)                                                                                                                                                                               | h <sub>DROP</sub>                                                            | 1.2                             | m                | (5)                      |
| 9<br>10<br>11<br>12 | Electrostatic Discharge (per AEC-Q100)<br>External Pins (V <sub>CC</sub> , I <sub>DATA</sub> , V <sub>SS</sub> , V <sub>SSA</sub> ), HBM (100 pF, 1.5 k $\Omega$ )<br>HBM (100 pF, 1.5 k $\Omega$ )<br>CDM (R = 0 $\Omega$ )<br>MM (200 pF, 0 $\Omega$ ) | V <sub>ESD</sub><br>V <sub>ESD</sub><br>V <sub>ESD</sub><br>V <sub>ESD</sub> | ±4000<br>±2000<br>±1500<br>±200 | V<br>V<br>V<br>V | (5)<br>(5)<br>(5)<br>(5) |
| 13<br>14            | Temperature Range<br>Storage<br>Junction                                                                                                                                                                                                                 | T <sub>stg</sub><br>T <sub>J</sub>                                           | -40 to +125<br>-40 to +150      | °C<br>°C         | (3)<br>(9)               |
| 15                  | Thermal Resistance                                                                                                                                                                                                                                       | θ <sub>JC</sub>                                                              | 2.5                             | °C/W             | (9, 14)                  |

| #        | Characteristic Symbol Min                                                                |                                       | Min                                            | Тур | Мах                                      | Units  |            |
|----------|------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|-----|------------------------------------------|--------|------------|
| 16<br>17 | Supply Voltage                                                                           | V <sub>CC</sub><br>V <sub>CC_UV</sub> | V <sub>L</sub><br>4.2<br>V <sub>VCC_UV_F</sub> |     | V <sub>H</sub><br>17.0<br>V <sub>L</sub> | v<br>v | (1)<br>(9) |
| 18       | Programming Voltage ( $I_{DATA} \le 85 \text{ mA}$ )<br>Applied to $I_{DATA}$ , $V_{CC}$ | V <sub>PP</sub>                       | 14.0                                           | _   | _                                        | v      | (3)        |
| 19<br>20 | Operating Temperature Range                                                              | T <sub>A</sub><br>T <sub>A</sub>      | T <sub>L</sub><br>-40<br>-40                   |     | T <sub>H</sub><br>+105<br>+125           | ℃<br>℃ | (1)<br>(3) |



# 

| #                    | Characteristic                                                                                                                                                                   | Symbol                                                                   | Min                                  | Тур                                  | Мах                                 | Units       |                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------|-------------------------------------------|
| 21                   | Quiescent Supply Current *                                                                                                                                                       | I <sub>IDLE</sub>                                                        | 4.0                                  | —                                    | 8.0                                 | mA          | (1)                                       |
| 22                   | Modulation Supply Current *                                                                                                                                                      | I <sub>MOD</sub>                                                         | I <sub>IDLE</sub> + 22.0             | I <sub>IDLE</sub> + 26.0             | I <sub>IDLE</sub> + 30.0            | mA          | (1)                                       |
| 23                   | Inrush Current (Power On until $V_{BUF}$ , $V_{REG}$ , $V_{REGA}$ Stable)                                                                                                        | I <sub>INRUSH</sub>                                                      | —                                    | _                                    | 30                                  | mA          | (3)                                       |
| 24<br>25<br>26       | Internally Regulated Voltages *<br>V <sub>BUF</sub> *<br>V <sub>REG</sub> *<br>V <sub>REGA</sub> *                                                                               | V <sub>BUF</sub><br>V <sub>REG</sub><br>V <sub>REGA</sub>                | 3.60<br>2.425<br>2.425               | 3.80<br>2.50<br>2.50                 | 4.00<br>2.575<br>2.575              | V<br>V<br>V | (1)<br>(1)<br>(1)                         |
| 27<br>28<br>29<br>30 | Low Voltage Detection Threshold<br>V <sub>CC</sub> Falling<br>V <sub>BUF</sub> Falling<br>V <sub>REG</sub> Falling<br>V <sub>REGA</sub> Falling<br>Hysteresis<br>V <sub>CC</sub> | Vvcc_uv_f<br>Vbuf_uv_f<br>Vreg_uv_f<br>Vrega_uv_f<br>Vcc_hyst            | 3.40<br>2.95<br>2.15<br>2.15<br>0.10 | 3.70<br>3.15<br>2.25<br>2.25<br>0.25 | 4.0<br>3.35<br>2.35<br>2.35<br>0.40 |             | (3, 6<br>(3, 6<br>(3, 6<br>(3, 6<br>(3, 6 |
| 32<br>33<br>34       | V <sub>BUF</sub><br>VREG<br>V <sub>REGA</sub>                                                                                                                                    | V <sub>BUF_HYST</sub><br>V <sub>REG_HYST</sub><br>V <sub>REGA_HYST</sub> | 0.05<br>0.05<br>0.05                 | 0.10<br>0.10<br>0.10                 | 0.15<br>0.15<br>0.15                | V<br>V<br>V | (3)<br>(3)<br>(3)                         |
| 35<br>36             | External Capacitor (V <sub>BUF</sub> , V <sub>REG</sub> , V <sub>REG</sub> )<br>Capacitance<br>ESR (including interconnect resistance)                                           | ESR                                                                      | 500<br>0                             | 1000<br>—                            | 1500<br>200                         | nF<br>mΩ    | (9)<br>(9)                                |
| 37<br>38             | Synchronization Pulse (Figure 5)<br>V <sub>IDLE</sub> Voltage Range *<br>DC Sync Pulse Detection Threshold *                                                                     | VIDLE<br>ΔV <sub>SYNC</sub>                                              | <br>V <sub>IDLE</sub> +1.4           | <br>V <sub>IDLE</sub> +2.0           | 15.4<br>V <sub>IDLE</sub> +2.6      | v<br>v      | (3, 1<br>(3, 6                            |
| 39                   | Sync Pulse Pulldown Current                                                                                                                                                      | I <sub>SYNC_PD</sub>                                                     | -                                    | I <sub>MOD</sub> - I <sub>IDLE</sub> | _                                   | mA          | (3)                                       |
| 40                   | Output High Voltage (DO)<br>I <sub>Load</sub> = 100 μA                                                                                                                           | V <sub>OH</sub>                                                          | V <sub>REG</sub> - 0.1               | _                                    | _                                   | v           | (9)                                       |
| 41                   | Output Low Voltage (DO)<br>I <sub>Load</sub> = 100 μA                                                                                                                            | V <sub>OL</sub>                                                          | _                                    | _                                    | 0.1                                 | v           | (9)                                       |
| 42                   | Inp <u>ut H</u> igh Voltage<br>CS, SCLK, DI                                                                                                                                      | V <sub>IH</sub>                                                          | 0.7 * V <sub>REG</sub>               | _                                    | _                                   | v           | (9)                                       |
| 43                   | Inp <u>ut L</u> ow Voltage<br>CS, SCLK, DI                                                                                                                                       | V <sub>IL</sub>                                                          | _                                    | _                                    | 0.3 * V <sub>REG</sub>              | v           | (9)                                       |
| 44<br>45             | Input Current<br>High (at V <sub>IH</sub> ) <u>(DI)</u><br>Low (at V <sub>IL</sub> ) (CS)                                                                                        | I <sub>IH</sub><br>I <sub>IL</sub>                                       | -100<br>10                           |                                      | -10<br>100                          | μΑ<br>μΑ    | (9)<br>(9)                                |
| 46                   | Pulldown Resistance (SCLK)                                                                                                                                                       | R <sub>PD</sub>                                                          | 20                                   | æ                                    | 100                                 | kΩ          | (9)                                       |
| 47                   | BUS_SW Output High Voltage (BUS_SW)<br>I <sub>Load</sub> = 100 μA                                                                                                                | V <sub>BUS_SW_OH</sub>                                                   | 3.15                                 | _                                    | V <sub>BUF</sub>                    | v           | (9)                                       |
| 48                   | Output Low Voltage (BUS_SW)<br>I <sub>Load</sub> = 100 μA                                                                                                                        | V <sub>BUS_SW_OL</sub>                                                   | 0.0                                  | _                                    | 0.45                                | v           | (9)                                       |
| 49                   | Daisy Chain Addressing Mode Sync Pulse Period                                                                                                                                    |                                                                          | -                                    | t <sub>S-S_PM_L</sub>                | _                                   | S           | (7)                                       |
| 50                   | Bus Switch Output Activation Time (C = 50 pF)<br>From last bit of "SetAdr" Response to 80% of V <sub>BUS_SW_OH</sub>                                                             | tBUS_SW                                                                  | _                                    | _                                    | 300                                 | μs          | (7)                                       |
| 51                   | Sync Pulse Blanking Time after "SetAdr" Command Received<br>From last bit of "SetAdr" Response                                                                                   | t <sub>DC_BLANKING</sub>                                                 |                                      | 200000 / f <sub>OSC</sub>            |                                     | s           | (7)                                       |



# 2.4 Electrical Characteristics - Sensor And Signal Chain

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ \text{K/min, unless otherwise specified.}$ 

| #                                | Characteristic                                                                                                                                                                                                                                                                                                                               | Symbol                                                                                                    | Min                              | Тур              | Мах                        | Units                            |                                        |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|------------------|----------------------------|----------------------------------|----------------------------------------|
| 52<br>53<br>54<br>55             | Sensitivity (10-bit output @ 100 Hz, referenced to 0 Hz)<br>±60g Range<br>±120g Range<br>±240g Range<br>±480g Range<br>Total Sensitivity Error (including non-linearity)                                                                                                                                                                     | SENS<br>SENS<br>SENS<br>SENS                                                                              | <br>                             | 8<br>4<br>2<br>1 | <br>                       | LSB/g<br>LSB/g<br>LSB/g<br>LSB/g | (1)<br>(1)<br>(1)<br>(1)               |
| 56<br>57<br>58<br>59<br>60<br>61 | $ \begin{array}{l} T_A = 25^{\circ}C, \leq \pm 240g \\ T_L \leq T_A \leq T_H, \leq \pm 240g \\ T_L \leq T_A \leq T_H, \leq \pm 240g, \\ V_{VCC\_UV\_F} \leq V_{CC} \leq V_L \\ T_A = 25^{\circ}C, > \pm 240g \\ T_L \leq T_A \leq T_H, > \pm 240g \\ T_L \leq T_A \leq T_H, > \pm 240g, \\ V_{VCC\_UV\_F} \leq V_{CC} \leq V_L \end{array} $ | ΔSENS_240   ΔSENS_240   ΔSENS_240   ΔSENS_240   ΔSENS_480   ΔSENS_480   ΔSENS_480   ΔSENS_480   ΔSENS_480 | -5<br>-7<br>-7<br>-5<br>-7<br>-7 |                  | +5<br>+7<br>+5<br>+7<br>+7 | %<br>%<br>%<br>%                 | (1)<br>(1)<br>(9)<br>(1)<br>(1)<br>(9) |
| 62<br>63                         | Digital Offset Before Offset Cancellation 10-bit 10-bit, $T_L \le T_A \le T_H$ , $V_{VCC\_UV\_F} \le V_{CC} \le V_L$                                                                                                                                                                                                                         | OFF <sub>10Bit</sub><br>OFF <sub>10Bit</sub>                                                              | -52<br>-52                       | 0<br>0           | +52<br>+52                 | LSB<br>LSB                       | (1)<br>(9)                             |
| 64<br>65                         | 10-DIL, 0.3 HZ HPF 01 0.1 HZ HPF                                                                                                                                                                                                                                                                                                             | OFF <sub>10Bit</sub><br>OFF <sub>10Bit</sub>                                                              | -1<br>-2                         | 0<br>0           | +1<br>+2                   | LSB<br>LSB                       | (1)<br>(9)                             |
| 66                               | Continuous Offset Monitor Limit<br>10-bit output, before compensation                                                                                                                                                                                                                                                                        | OFF <sub>MON</sub>                                                                                        | -66                              | _                | +66                        | LSB                              | (3)                                    |
| 67                               | Range of Output (10-bit Mode)<br>Acceleration                                                                                                                                                                                                                                                                                                | RANGE                                                                                                     | -480                             | _                | +480                       | LSB                              | (3)                                    |
| 68<br>69                         | Cross-Axis Sensitivity<br>Z-axis to X-axis<br>Y-axis to X-axis                                                                                                                                                                                                                                                                               | V <sub>ZX</sub><br>V <sub>YX</sub>                                                                        | -5<br>-5                         |                  | +5<br>+5                   | %<br>%                           | (3)<br>(3)                             |
| 70                               | System Output Noise Peak (10-bit Mode, 1 Hz - 1 kHz, All Ranges)                                                                                                                                                                                                                                                                             | n <sub>Peak</sub>                                                                                         | -4                               | —                | +4                         | LSB                              | (3)                                    |
| 71                               | System Output Noise RMS (10-bit mode, 1 Hz - 1 kHz, All Ranges)                                                                                                                                                                                                                                                                              | * n <sub>RMS</sub>                                                                                        | _                                | —                | +1.0                       | LSB                              | (3)                                    |
| 72<br>73                         | Non-linearity<br>10-bit output, ≤ ±240g<br>10-bit output, > ±240g                                                                                                                                                                                                                                                                            | NL <sub>OUT_240g</sub><br>NL <sub>OUT_480g</sub>                                                          | -2<br>-2                         |                  | +2<br>+2                   | %<br>%                           | (3)<br>(3)                             |

# 2.5 Electrical Characteristics - Self-Test and Overload

 $V_L \leq (V_{CC} \text{ - } V_{SS}) \leq V_H, \, T_L \leq T_A \leq T_H, \, \Delta T \leq 25 \text{ K/min, unless otherwise specified.}$ 

| #                    | Characteristic                                                                                                             | Symbol                                                      | Min                  | Тур      | Мах                      | Units                    | [                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|----------|--------------------------|--------------------------|--------------------------|
| 74<br>75<br>76<br>77 | 10-Bit Output During Active Self-Test ( $T_L \le T_A \le T_H$ )<br>±60g Range<br>±120g Range<br>±240g Range<br>±480g Range | * 9st10_60X<br>* 9st10_120X<br>* 9st10_240X<br>* 9st10_480X | 120<br>40<br>56<br>8 | <br><br> | 280<br>160<br>184<br>112 | LSB<br>LSB<br>LSB<br>LSB | (3)<br>(3)<br>(3)<br>(3) |
| 78                   | Acceleration (without hitting internal g-cell stops)<br>±60g Range Positive/Negative                                       | g <sub>g-cell_</sub> Clip60X                                | 400                  | 456      | 500                      | g                        | (9)                      |
| 79                   | Acceleration (without hitting internal g-cell stops)<br>±120g Range Positive/Negative                                      | gg-cell_Clip120X                                            | 400                  | 456      | 500                      | g                        | (9)                      |
| 80                   | Acceleration (without hitting internal g-cell stops)<br>±240g Range Positive/Negative                                      | gg-cell_Clip240X                                            | 1750                 | 2065     | 2300                     | g                        | (9)                      |
| 81                   | Acceleration (without hitting internal g-cell stops)<br>±480g Range Positive/Negative                                      | gg-cell_Clip480X                                            | 1750                 | 2065     | 2300                     | g                        | (9)                      |
| 82                   | $\Sigma\Delta$ and Sinc Filter Clipping Limit $\pm 60g$ Range Positive/Negative                                            | gadc_clip60X                                                | 191                  | 210      | 233                      | g                        | (9)                      |
| 83                   | $\Sigma\Delta$ and Sinc Filter Clipping Limit $\pm 120g$ Range Positive/Negative                                           | GADC_Clip120X                                               | 353                  | 380      | 410                      | g                        | (9)                      |
| 84                   | ΣΔ and Sinc Filter Clipping Limit<br>±240g Range Positive/Negative                                                         | gADC_Clip240X                                               | 928                  | 1055     | 1218                     | g                        | (9)                      |
| 85                   | ΣΔ and Sinc Filter Clipping Limit<br>±480g Range Positive/Negative                                                         | gADC_Clip480X                                               | 1690                 | 1879     | 2106                     | g                        | (9)                      |



# 2.6 Dynamic Electrical Characteristics - PSI5

 $V_L \le (V_{CC} - V_{SS}) \le V_H, T_L \le T_A \le T_H, \Delta T \le 25$  K/min, unless otherwise specified

| #                                                                                        | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Symbol                                                                                                                                                                                                                                                                                                             | Min                                                                                              | Тур                                                                                                                                                                      | Max                                                                                              | Units                                                                                                          | ]                                                                                                                                                        |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101 | Initialization Timing<br>Phase 1<br>Phase 2 (10-Bit, Synchronous Mode, k = 4)<br>Phase 2 (8-Bit, Synchronous Mode 0, k = 8)<br>Phase 2 (8-Bit, Asynchronous Mode 0, k = 8)<br>Phase 2 (8-Bit, Asynchronous Mode 0, k = 16)<br>Phase 3 (10-Bit, Synchronous Mode, ST_RPT = 0)<br>Phase 3 (10-Bit, Asynchronous Mode, ST_RPT = 0)<br>Phase 3 (10-Bit, Asynchronous Mode 0, ST_RPT = 0)<br>Phase 3 (10-Bit, Asynchronous Mode 0, ST_RPT = 0)<br>Phase 3 (8-Bit, Asynchronous Mode 0, ST_RPT = 0)<br>Phase 3 (8-Bit, Asynchronous Mode 0, ST_RPT = 0)<br>Offset Cancellation Stage 1 Operating Time<br>Offset Cancellation Stage 1 Operating Time<br>Self-Test Stage 1 Operating Time<br>Self-Test Stage 2 Operating Time<br>Self-Test Stage 3 Operating Time<br>Self-Test Repetitions<br>Programming Mode Entry Window | tpsi5_INIT1   tpsi5_INIT2_10s   tpsi5_INIT2_10a   tpsi5_INIT2_10a0   tpsi5_INIT2_8a0   tpsi5_INIT3_10a   tpsi5_INIT3_10a0   tpsi5_INIT3_10a0   tpsi5_INIT3_8a   tpsi5_INIT3_8a   tpsi5_INIT3_10a0   tpsi5_INIT3_8a0   tocc1   toc2   tST1   tST2   tST3   ST_RPT   tPME                                            | <br><br><br><br>0                                                                                | 532000 / fosc<br>256 * ts-s<br>288 * ts-s<br>512 * tasync<br>576 * tasync<br>2 * ts-s<br>19 * tasync<br>320000 / fosc<br>128000 / fosc<br>128000 / fosc<br>300000 / fosc |                                                                                                  | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | (7)<br>(7)<br>(7)<br>(7, 12)<br>(7, 12)<br>(7, 12)<br>(7, 12)<br>(7, 12)<br>(7, 12)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 |
| 102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113         | Synchronization Pulse (Figure 5, Figure 28 and Figure 32)<br>Reset to first sync pulse (Program Mode Entry)<br>Reset to first sync pulse (Normal Mode)<br>Sync Pulse Period<br>Sync Pulse Width<br>Sync Pulse Reference LPF time constant<br>Sync Pulse Reference Discharge Activation Time<br>Sync Pulse Reference Discharge Activation Time<br>Sync Pulse Detection Disable Time (BLANKTIME = 0)<br>Analog Delay of Sync Pulse Detection<br>Sync Pulse Pulldown Function Delay Time<br>Sync Pulse Pulldown Function Delay Time<br>Sync Pulse Detection Jitter                                                                                                                                                                                                                                                     | <sup>t</sup> RS_PM<br>tRS<br><sup>t</sup> S-S<br><sup>t</sup> SYNC<br><sup>t</sup> SYNC_LPF<br><sup>t</sup> SYNC_LPF_RST_ST<br><sup>t</sup> SYNC_LPF_RST<br><sup>t</sup> SYNC_LPF_RST<br><sup>t</sup> SYNC_DF_500<br><sup>t</sup> A_SYNC_DLY<br><sup>t</sup> PD_DLY<br><sup>t</sup> PD_ON<br><sup>t</sup> SYNC_JIT | 58<br>tpsis_init1<br>tsync_off<br>9<br>120<br>—<br>—<br>50<br>—<br>50<br>—<br>0                  |                                                                                                                                                                          |                                                                                                  | ms<br>s<br>μs<br>μs<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                          | (7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)                                                                                       |
| 114<br>115                                                                               | Data Transmission Single Bit Time (PSI5 Low Bit Rate)<br>Data Transmission Single Bit Time (PSI5 High Bit Rate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>t</sup> віт_low<br><sup>t</sup> віт_ні                                                                                                                                                                                                                                                                        | 7.6000<br>4.9875                                                                                 | 8.0000<br>5.2500                                                                                                                                                         | 8.4000<br>5.5125                                                                                 | μs<br>μs                                                                                                       | (7)<br>(7)                                                                                                                                               |
| 116<br>117                                                                               | Modulation Current (20% to 80% of I <sub>MOD</sub> - I <sub>IDLE</sub> )<br>Rise Time<br>Fall Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>t</sup> RISE<br><sup>t</sup> FALL                                                                                                                                                                                                                                                                             | 324<br>324                                                                                       | 463<br>463                                                                                                                                                               | 602<br>602                                                                                       | ns<br>ns                                                                                                       | (3)<br>(3)                                                                                                                                               |
| 118<br>119                                                                               | Position of bit transition (PSI5 Low Baud Rate)<br>Position of bit transition (PSI5 High Baud Rate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t <sub>Bittrans_LowBaud</sub>                                                                                                                                                                                                                                                                                      | 49<br>47                                                                                         | 50<br>æ                                                                                                                                                                  | 51<br>53                                                                                         | %<br>%                                                                                                         | (7)<br>(7)                                                                                                                                               |
| 120                                                                                      | Asynchronous Response Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tASYNC                                                                                                                                                                                                                                                                                                             | —                                                                                                | 912 / f <sub>OSC</sub>                                                                                                                                                   | æ                                                                                                | s                                                                                                              | (7)                                                                                                                                                      |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128                                     | Time Slots<br>Minimum Programmed Time Slot (TIMESLOTx = 0x001)<br>Maximum Programmed Time Slot (TIMESLOTx = 0x3FF)<br>Default Time Slot (TIMESLOTx = 0x000)<br>Time Slot Resolution<br>Sync Pulse to Daisy Chain Default Time Slot 1<br>Sync Pulse to Daisy Chain Default Time Slot 2<br>Sync Pulse to Daisy Chain Default Time Slot 3<br>Sync Pulse to Daisy Chain Programming Time Slot                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>t</sup> TIMESLOTx_MIN<br><sup>t</sup> TIMESLOTx_MAX<br><sup>t</sup> TIMESLOT_DFLT<br><sup>t</sup> TIMESLOT_C1<br><sup>t</sup> TIMESLOT_DC1<br><sup>t</sup> TIMESLOT_DC2<br><sup>t</sup> TIMESLOT_DC3<br><sup>t</sup> TIMESLOT_DCP                                                                             |                                                                                                  | 2 / f <sub>OSC</sub><br>2046 / fosc<br>186 / fosc<br>2 / fosc<br>186 / fosc<br>186 / fosc<br>1400 / fosc<br>186 / fosc                                                   |                                                                                                  | s<br>s<br>s/LSB<br>s<br>s<br>s<br>s                                                                            | (7, 9)<br>(3, 7)<br>(3, 7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)                                                                              |
| 129<br>130<br>131<br>132                                                                 | Data Interpolation Latency (Figure 35, Figure 36)<br>Data Setup Time - Synchronous Mode (Figure 36)<br>Data Setup Time - Double Sample Rate Mode (Figure 37)<br>Data Setup Time - 16-bit Resolution Mode (Figure 39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tLAT_INTERP<br>tDATASETUP_synch<br>tDATASETUP_double<br>tDATASETUP_16                                                                                                                                                                                                                                              | 64 / f <sub>OSC</sub><br>48 / f <sub>OSC</sub><br>48 / f <sub>OSC</sub><br>48 / f <sub>OSC</sub> | <br>                                                                                                                                                                     | 65 / f <sub>OSC</sub><br>56 / f <sub>OSC</sub><br>60 / f <sub>OSC</sub><br>60 / f <sub>OSC</sub> | S<br>S<br>S<br>S                                                                                               | (7)<br>(7)<br>(7)<br>(7)                                                                                                                                 |
| 133<br>134<br>135<br>136<br>137                                                          | Programming Mode Timing<br>Programming Mode Sync Pulse Period<br>Programming Mode Command Timeout<br>OTP Write Command to $V_{CC} = V_{PP}$<br>OTP Write CMD Response to OTP programming start<br>Time to program the OTP User Array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts-s_pm_l<br>tpm_timeout<br>tprog_hold<br>tprog_delay<br>tprog_array                                                                                                                                                                                                                                               | 495<br>—<br>—<br>—<br>70                                                                         | 500<br>4 * t <sub>S-S_PM</sub><br>—<br>—<br>—                                                                                                                            | 505<br>—<br>20<br>40<br>—                                                                        | μs<br>μs<br>μs<br>ms<br>ms                                                                                     | (7)<br>(7)<br>(7)<br>(7)<br>(7)                                                                                                                          |



# **2.7 Dynamic Electrical Characteristics - Signal Chain** $V_L \leq (V_{CC} - V_{SS}) \leq V_H, T_L \leq T_A \leq T_H, \Delta T \leq 25$ K/min, unless otherwise specified

| #                                                                                              | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Symbol                                                                                                                                                                                             | Min                              | Тур                                                                                                                                                                                          | Мах                              | Units                                                            | ]                                                                            |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|
| 138                                                                                            | Internal Oscillator Frequency *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fosc                                                                                                                                                                                               | 3.80                             | 4                                                                                                                                                                                            | 4.20                             | MHz                                                              | (1                                                                           |
| 139<br>140<br>141<br>142                                                                       | DSP Low-Pass Filter (Note15)<br>Cutoff frequency LPF0 (referenced to 0 Hz) *<br>Filter Order LPF0 *<br>Cutoff frequency LPF1 (referenced to 0 Hz) *<br>Filter Order LPF1 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f <u>c_l</u> pf0<br>O <sub>LPF0</sub><br>fc_lpf1<br>O <sub>LPF1</sub>                                                                                                                              |                                  | 400<br>3<br>400<br>4                                                                                                                                                                         |                                  | Hz<br>1<br>Hz<br>1                                               | (7<br>(7<br>(7<br>(7                                                         |
| 143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155<br>156 | DSP Offset Cancellation Low-Pass Filter (Note 15)<br>Offset Cancellation Low-Pass Filter Input Sample Rate<br>Stage 1 Cutoff frequency, Startup Phase 1<br>Stage 1 Filter Order, Startup Phase 1<br>Stage 2 Cutoff frequency, Startup Phase 1<br>Stage 2 Filter Order, Startup Phase 1<br>Cutoff frequency, Option 0<br>Filter Order, Option 0<br>Offset Cancellation Output Update Rate (8-Bit Mode)<br>Offset Cancellation Output Update Rate (10-Bit Mode)<br>Offset Cancellation Output Update Rate (10-Bit Mode)<br>Offset Cancellation Output Step Size (10-Bit Mode)<br>Offset Monitor Update Frequency<br>Offset Monitor Count Limit<br>Offset Monitor Counter Size | <sup>t</sup> OC_SampleRate<br>fc_OC10<br>OOC10<br>fc_OC03<br>OOC03<br>fc_OC0<br>OCC0<br>tOffRate_8<br>OFF Step_8<br>tOffRate_10<br>OFF Step_10<br>OFF MON_OSC<br>OFFMON_CNTLIMIT<br>OFFMON_CNTSIZE |                                  | 256<br>10.0<br>1<br>0.300<br>1<br>0.100<br>1<br>f <sub>OSC</sub> / 2e6<br>0.125<br>f <sub>OSC</sub> / 2e6<br>0.5<br>f <sub>OSC</sub> / 2e6<br>0.5<br>f <sub>OSC</sub> / 2000<br>4096<br>8192 |                                  | μs<br>Hz<br>1<br>Hz<br>1<br>S<br>LSB<br>S<br>LSB<br>Hz<br>1<br>1 | (7<br>(7<br>(7<br>(7<br>(7<br>(7<br>(7<br>(7<br>(7<br>(7<br>(7)<br>(7)<br>(7 |
| 157<br>158<br>159<br>160                                                                       | Sensing Element Natural Frequency<br>±60g<br>±120g<br>±240g<br>±480g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fgcell_X60<br>fgcell_X120<br>fgcell_X240<br>fgcell_X240<br>fgcell_X480                                                                                                                             | 12651<br>12651<br>26000<br>26000 | <br>                                                                                                                                                                                         | 13871<br>13871<br>28700<br>28700 | Hz<br>Hz<br>Hz<br>Hz                                             | (9<br>(9<br>(9<br>(9                                                         |
| 161<br>162<br>163<br>164                                                                       | Sensing Element Rolloff Frequency (-3 db)<br>±60g<br>±120g<br>±240g<br>±480g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fgcell_X60<br>fgcell_X120<br>fgcell_X240<br>fgcell_X240<br>fgcell_X480                                                                                                                             | 938<br>938<br>3952<br>3952       |                                                                                                                                                                                              | 2592<br>2592<br>14370<br>14370   | Hz<br>Hz<br>Hz<br>Hz                                             | (9<br>(9<br>(9<br>(9                                                         |
| 165<br>166<br>167<br>168                                                                       | Sensing Element Damping Ratio<br>±60g<br>±120g<br>±240g<br>±480g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ζgcell_X60<br>ζgcell_X120<br>ζgcell_X240<br>ζgcell_X480                                                                                                                                            | 2.760<br>2.760<br>1.260<br>1.260 | <br>                                                                                                                                                                                         | 6.770<br>6.770<br>3.602<br>3.602 | <br><br>                                                         | (9<br>(9<br>(9                                                               |
| 169<br>170<br>171<br>172                                                                       | Sensing Element Delay (@100 Hz)<br>±60g<br>±120g<br>±240g<br>±480g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>f</sup> gcell_delay_X60<br><sup>f</sup> gcell_delay_X120<br><sup>f</sup> gcell_delay_X240<br><sup>f</sup> gcell_delay_X240                                                                    | 63<br>63<br>13<br>13             | <br>                                                                                                                                                                                         | 170<br>170<br>40<br>40           | μs<br>μs<br>μs<br>μs                                             | (9<br>(9<br>(9<br>(9                                                         |
| 173                                                                                            | Package Resonance Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>Package</sub>                                                                                                                                                                               | 100                              | _                                                                                                                                                                                            |                                  | kHz                                                              | (9                                                                           |



# 2.8 Dynamic Electrical Characteristics - Supply and SPI

 $V_{I} \leq (V_{CC} - V_{SS}) \leq V_{H}, T_{I} \leq T_{A} \leq T_{H}, \Delta T \leq 25$  K/min, unless otherwise specified

| #                                       | Characteristic                                                                                                                                                                                                                                                                                                                                                                                       | Symbol                                                                                                                                     | Min                   | Тур                                                                                | Max      | Units                                                                           |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------|
| 74                                      | Quiescent Current Settling Time (Power Applied to $Iq = I_{IDLE} \pm 2mA$ )                                                                                                                                                                                                                                                                                                                          | t <sub>SET</sub>                                                                                                                           | —                     | —                                                                                  | 5        | ms                                                                              |
| 75                                      | Reset Recovery Internal Delay (After internal POR)                                                                                                                                                                                                                                                                                                                                                   | t <sub>INT_INIT</sub>                                                                                                                      | —                     | 16000 / f <sub>OSC</sub>                                                           |          | s                                                                               |
| 76<br>77<br>78                          | $\label{eq:VCC} \begin{array}{l} V_{CC} \mbox{ Micro-cut} \ (C_{BUF}=C_{REG}=C_{REGA}=1 \ \mu F) \\ Survival \ Time \ (V_{CC} \ disconnect \ without \ Reset, \ C_{BUF}=C_{REG}=C_{REGA}=700 \ nF) \\ Survival \ Time \ (V_{CC} \ disconnect \ without \ Reset, \ C_{BUF}=C_{REG}=C_{REGA}=1 \ \mu F) \\ Reset \ Time \ (V_{CC} \ disconnect \ above \ which \ Reset \ is \ guaranteed) \end{array}$ | tvcc_MICROCUTmin<br>tvcc_MICROCUT<br>tvcc_RESET                                                                                            | 30<br>50              |                                                                                    | <br>1000 | μs<br>μs<br>μs                                                                  |
| 19<br>10<br>11<br>12                    | V <sub>BUF</sub> , Capacitor Monitor Disconnect Time (Figure 10)<br>POR to first Capacitor Test Disconnect<br>Disconnect Time (Figure 10)<br>Disconnect Delay, Asynchronous Mode (Figure 10)<br>Disconnect Delay, Synchronous Mode (Figure 11)                                                                                                                                                       | <sup>t</sup> POR_CAPTEST<br><sup>t</sup> CAPTEST_TIME<br><sup>t</sup> CAPTEST_ADLY<br><sup>t</sup> CAPTEST_SDLY                            |                       | 12000 / f <sub>OSC</sub><br>1.5<br>688 / f <sub>OSC</sub><br>72 / f <sub>OSC</sub> | 5.0<br>— | s<br>µs<br>s<br>s                                                               |
| 13<br>14<br>15                          | V <sub>REG</sub> , V <sub>REGA</sub> Capacitor Monitor<br>POR to first Capacitor Test Disconnect<br>Disconnect Time<br>Disconnect Rate                                                                                                                                                                                                                                                               | <sup>t</sup> POR_CAPTEST<br><sup>t</sup> CAPTEST_TIME<br><sup>t</sup> CAPTEST_RATE                                                         |                       | 12000 / f <sub>OSC</sub><br>6 / f <sub>OSC</sub><br>256 / f <sub>OSC</sub>         |          | s<br>s<br>s                                                                     |
| 36 37 38 39 00 1 32 33 4 35 66 77 38 39 |                                                                                                                                                                                                                                                                                                                                                                                                      | tsclk<br>tsclkh<br>tsclkl<br>tsclkr<br>tsclkr<br>tlead<br>taccess<br>tsetup<br>thold_in<br>thold_out<br>tvalid<br>tlag<br>toisable<br>tcsn | 320<br>120<br>120<br> | <br>15<br>15<br>                                                                   |          | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>n |

1. Parameters tested 100% at final test.

2. Parameters tested 100% at wafer probe.

3. Verified by characterization

4. \* Indicates critical characteristic.

5. Verified by qualification testing.

6. Parameters verified by pass/fail testing in production.

7. Functionality guaranteed by modeling, simulation and/or design verification. Circuit integrity assured through IDDQ and scan testing. Timing is determined by internal system clock frequency.

8. N/A.

9. Verified by simulation.

10. N/A.

11. Measured at  $V_{CC}$  pin;  $V_{SYNC}$  guaranteed across full  $V_{\text{IDLE}}$  range.

12. Self-Test repeats on failure up to a ST\_RPT<sub>MAX</sub> times before transmitting Sensor Error Message.

13. N/A.

14. Thermal resistance between the die junction and the exposed pad; cold plate is attached to the exposed pad.

15. Filter cutoff frequencies are directly dependent upon the internal oscillator frequency.



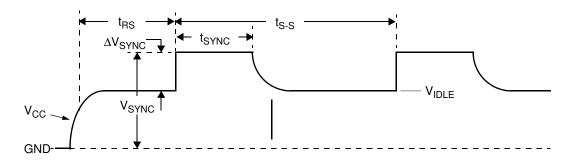
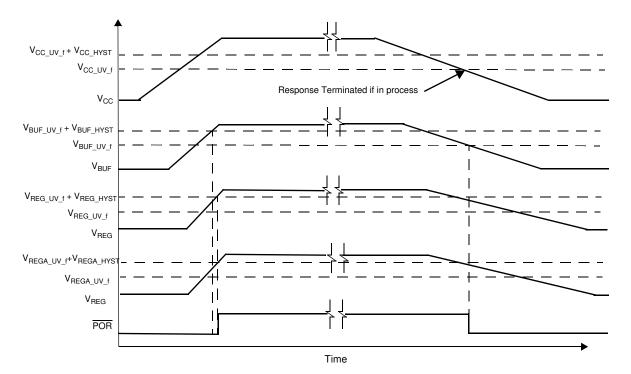




Figure 5. Sync Pulse Characteristics





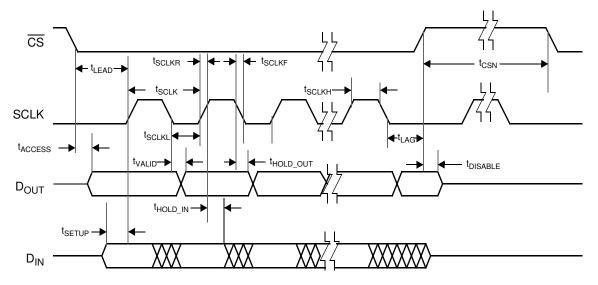



Figure 7. Serial Interface Timing

# NP

# 3 Functional Description

# 3.1 User Accessible Data Array

A user accessible data array allows for each device to be customized. The array consists of an OTP factory programmable block, an OTP user programmable block, and read only registers for device status. The OTP blocks incorporate independent error detection circuitry for fault detection (reference Section 3.2). Portions of the factory programmable array are reserved for factory-programmed trim values. The user accessible data is shown in Table 3.

| Byte<br>Addr   |          | Nibble<br>Addr |              | Bit Fu       | nction       |              | Nibble<br>Addr |              | Bit Fu       | nction       |              |      |
|----------------|----------|----------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|------|
| (XLong<br>Msg) | Register | (Long<br>Msg)  | 7            | 6            | 5            | 4            | (Long<br>Msg)  | 3            | 2            | 1            | 0            | Туре |
| \$00           | SN0      | \$01           | SN[7]        | SN[6]        | SN[5]        | SN[4]        | \$00           | SN[3]        | SN[2]        | SN[1]        | SN[0]        |      |
| \$01           | SN1      | \$03           | SN[15]       | SN[14]       | SN[13]       | SN[12]       | \$02           | SN[11]       | SN[10]       | SN[9]        | SN[8]        |      |
| \$02           | SN2      | \$05           | SN[23]       | SN[22]       | SN[21]       | SN[20]       | \$04           | SN[19]       | SN[18]       | SN[17]       | SN[16]       | F, R |
| \$03           | SN3      | \$07           | SN[31]       | SN[30]       | SN[29]       | SN[28]       | \$06           | SN[27]       | SN[26]       | SN[25]       | SN[24]       |      |
| \$04           | DEVCFG1  | \$09           | 0            | 0            | 1            | 0            | \$08           | AXIS         | RNG[2]       | RNG[1]       | RNG[0]       |      |
| \$05           | DEVCFG2  | \$0B           | LOCK_U       | PCM          | SYNC_PD      | LATENCY      | \$0A           | DATASIZE     | BLANKTIME    | P_CRC        | BAUD         |      |
| \$06           | DEVCFG3  | \$0D           | TRANS_MD[1]  | TRANS_MD[0]  | LPF[1]       | LPF[0]       | \$0C           | TIMESLOTB[9] | TIMESLOTB[8] | TIMESLOTA[9] | TIMESLOTA[8] |      |
| \$07           | DEVCFG4  | \$0F           | TIMESLOTA[7] | TIMESLOTA[6] | TIMESLOTA[5] | TIMESLOTA[4] | \$0E           | TIMESLOTA[3] | TIMESLOTA[2] | TIMESLOTA[1] | TIMESLOTA[0] |      |
| \$08           | DEVCFG5  | \$11           | TIMESLOTB[7] | TIMESLOTB[6] | TIMESLOTB[5] | TIMESLOTB[4] | \$10           | TIMESLOTB[3] | TIMESLOTB[2] | TIMESLOTB[1] | TIMESLOTB[0] | U, R |
| \$09           | DEVCFG6  | \$13           | INIT2_EXT    | ASYNC        | U_DIR[1]     | U_DIR[0]     | \$12           | U_REV[3]     | U_REV[2]     | U_REV[1]     | U_REV[0]     |      |
| \$0A           | DEVCFG7  | \$15           | MONTH[3]     | MONTH[2]     | MONTH[1]     | MONTH[0]     | \$14           | YEAR[3]      | YEAR[2]      | YEAR[1]      | YEAR[0]      |      |
| \$0B           | DEVCFG8  | \$17           | UD[2]        | UD[1]        | UD[0]        | DAY[4]       | \$16           | DAY[3]       | DAY[2]       | DAY[1]       | DAY[0]       |      |
| \$0C           | SC       | \$19           | 0            | TM_B         | RESERVED     | IDEN_B       | \$18           | OC_INIT_B    | IDEF_B       | OFF_B        | 0            | R    |
| \$0D           | MFG_ID   | \$1B           | MFG_ID[7]    | MFG_ID[6]    | MFG_ID[5]    | MFG_ID[4]    | \$1A           | MFG_ID[3]    | MFG_ID[2]    | MFG_ID[1]    | MFG_ID[0]    | U, R |

#### Table 3. User Accessible Data

Type codes

F: Freescale programmed OTP location

U: User programmable OTP location via PSI5

R: Readable register via PSI5

#### 3.1.1 Device Serial Number Registers

A unique serial number is programmed into the serial number registers of each device during manufacturing. The serial number is composed of the following information:

| Bit Range | Content       |
|-----------|---------------|
| SN[12:0]  | Serial Number |
| SN[31:13] | Lot Number    |

Serial numbers begin at 1 for all produced devices in each lot and are sequentially assigned. Lot numbers begin at 1 and are sequentially assigned. No lot will contain more devices than can be uniquely identified by the 13-bit serial number. Depending on lot size and quantities, all possible lot numbers and serial numbers may not be assigned.

The serial number registers are included in the factory programmed OTP CRC verification. Reference Section 3.2.1 for details regarding the CRC verification. Beyond this, the contents of the serial number registers have no impact on device operation or performance, and are only used for traceability purposes.



# 3.1.2 Factory Configuration Register (DEVCFG1)

The factory configuration register is a factory programmed, read only register which contains user specific device configuration information. The factory configuration register is included in the factory programmed OTP CRC verification.

| Loca    | ation    |   | Bit |   |   |      |        |        |        |
|---------|----------|---|-----|---|---|------|--------|--------|--------|
| Address | Register | 7 | 6   | 5 | 4 | 3    | 2      | 1      | 0      |
| \$04    | DEVCFG1  | 0 | 0   | 1 | 0 | AXIS | RNG[2] | RNG[1] | RNG[0] |
| Factory | Default  | 0 | 0   | 1 | 0 | 0    | 0      | 0      | 0      |

#### 3.1.2.1 Axis Indication Bit (AXIS)

The axis indication bit indicates the axes of sensitivity as shown below. This bit is factory programmed.

| AXIS | Sensitivity Axis |
|------|------------------|
| 0    | Х                |
| 1    | Z                |

#### 3.1.2.2 Range Indication Bits (RNG[2:0])

The range indication bits are factory programmed and indicate the full-scale range of the device as shown below.

| RNG[2] | RNG[1] | RNG[0] | Full-Scale Acceleration<br>Range | g-Cell Design | PSI5 Init Data<br>Transmission (D9)<br>Reference Table 13 |
|--------|--------|--------|----------------------------------|---------------|-----------------------------------------------------------|
| 0      | 0      | 0      | Reserved                         | N/A           | 0001                                                      |
| 0      | 0      | 1      | ±60g                             | Medium-g      | 0111                                                      |
| 0      | 1      | 0      | Reserved                         | N/A           | 0010                                                      |
| 0      | 1      | 1      | ±120 g                           | Medium-g      | 1000                                                      |
| 1      | 0      | 0      | Reserved                         | N/A           | 0011                                                      |
| 1      | 0      | 1      | ±240 g                           | High-g        | 1001                                                      |
| 1      | 1      | 0      | Reserved                         | N/A           | 0100                                                      |
| 1      | 1      | 1      | ±480 g                           | High-g        | 1010                                                      |

### 3.1.3 Device Configuration 2 Register (DEVCFG2)

Device configuration register 2 is a user programmable OTP register that contains device configuration information.

| Loca    | ation    |        | Bit |         |         |          |           |       |      |
|---------|----------|--------|-----|---------|---------|----------|-----------|-------|------|
| Address | Register | 7      | 6   | 5       | 4       | 3        | 2         | 1     | 0    |
| \$05    | DEVCFG2  | LOCK_U | PCM | SYNC_PD | LATENCY | DATASIZE | BLANKTIME | P_CRC | BAUD |
| Factory | Default  | 0      | 0   | 0       | 0       | 0        | 0         | 0     | 0    |

#### 3.1.3.1 User Configuration Lock Bit (LOCK\_U)

The LOCK\_U bit allows the user to prevent writes to the user configuration array once programming is completed.

If the LOCK\_U bit is written to '1' when a PSI5 "Execute Programming of NVM" command is executed, the LOCK\_U OTP bit will be programmed. Upon completion of the OTP programming, an OTP readout will be executed, locking the array from future OTP writes. The User Programmable OTP Array Error Detection Verification is also activated (Reference Section 3.2.2).



#### 3.1.3.2 PCM Enable Bit (PCM)

The PCM bit enables the PCM output pin. When the PCM bit is set, the PCM output pin is active and outputs a Pulse Code Modulated signal proportional to the acceleration response. Reference Section 3.5.3.7 for more information regarding the PCM output. When the PCM bit is cleared, the PCM output pin is actively pulled low.

| PCM | PCM Output          |
|-----|---------------------|
| 0   | Actively Pulled Low |
| 1   | PCM Signal Enabled  |

#### 3.1.3.3 Sync Pulse Pulldown Enable Bit (SYNC\_PD)

The sync pulse pulldown enable bit selects if the sync pulse pulldown is enabled once a sync pulse is detected. Reference Section 4.2.1.2 for more information regarding the sync pulse pulldown.

| SYNC_PD | Sync Pulse Pulldown |
|---------|---------------------|
| 0       | Disabled            |
| 1       | Enabled             |

If Daisy Chain Mode is enabled, the Sync Pulse Pulldown is enabled as listed below:

| SYNC_PD | Daisy Chain Address<br>Programmed | "Run Mode"<br>Command Received | Daisy Chain Address = '001' | Sync Pulse Pulldown |
|---------|-----------------------------------|--------------------------------|-----------------------------|---------------------|
| 0       | Х                                 | Х                              | Х                           | Disabled            |
| 1       | No                                | Х                              | Х                           | Enabled             |
| 1       | Yes                               | No                             | Х                           | Disabled            |
| 1       | Yes                               | Yes                            | No                          | Disabled            |
| 1       | Yes                               | Yes                            | Yes                         | Enabled             |

#### 3.1.3.4 Latency Selection Bit (LATENCY)

The latency selection bit selects between one of two data latency methods to accommodate synchronized sampling or simultaneous sampling. Reference Section 4.5 for more information regarding latency and data synchronization.

| Latency | Data Latency                                                |
|---------|-------------------------------------------------------------|
| 0       | Simultaneous Sampling Mode (Latency relative to Sync Pulse) |
| 1       | Synchronous Sampling Mode (Latency relative to Time Slot)   |

#### 3.1.3.5 Data Size Selection Bit (DATASIZE)

The data size selection bit selects one of two data lengths for the PSI5 response message as shown below.

| DATASIZE | Data Length |
|----------|-------------|
| 0        | 10 Bits     |
| 1        | 8 Bits      |

#### 3.1.3.6 PSI5 Sync Pulse Blanking Time Selection Bit (BLANKTIME)

The PSI5 sync pulse blanking time selection bit selects the timing for ignoring sync pulses after successful reception of a sync pulse. Reference Section 4.2.1.1 for details regarding sync pulse detection and blanking.

| BLANKTIME | Blanking Time Method                                                              |
|-----------|-----------------------------------------------------------------------------------|
| 0         | Maximum of t <sub>SYNC_OFF_500</sub> or Response Transmission Complete            |
| 1         | Blanking Time determined by end of response transmission for programmed time slot |

#### MMA52xxLW



#### 3.1.3.7 PSI5 Response Message Error Detection Selection Bit (P\_CRC)

The PSI5 response message error detection selection bit selects either even parity, or a 3-Bit CRC for error detection of the PSI5 response message. Reference Section 4.3.3 for details regarding response message error detection.

| P_CRC | Parity or CRC |
|-------|---------------|
| 0     | Parity        |
| 1     | CRC           |

Note: The PSI5 specification recommends parity for data lengths of 10 bits or less.

#### 3.1.3.8 Baud Rate Selection Bit (BAUD)

The baud rate selection bit selects one of two PSI5 baud rates as shown below. Reference Section 2.6 for baud rate timing specifications.

| BAUD | Baud Rate                    |
|------|------------------------------|
| 0    | Low Baud Rate (125 kBaud)    |
| 1    | High Baud Rate (190.5 kBaud) |

#### 3.1.4 Device Configuration Registers (DEVCFG3, DEVCFG4, DEVCFG5)

Device configuration registers 3, 4, and 5 are user programmable OTP registers which contain device configuration information.

| Loo     | cation    | Bit          |              |              |              |              |              |              |              |
|---------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Address | Register  | 7            | 6            | 5            | 4            | 3            | 2            | 1            | 0            |
| \$06    | DEVCFG3   | TRANS_MD[1]  | TRANS_MD[0]  | LPF[1]       | LPF[0]       | TIMESLOTB[9] | TIMESLOTB[8] | TIMESLOTA[9] | TIMESLOTA[8] |
| \$07    | DEVCFG4   | TIMESLOTA[7] | TIMESLOTA[6] | TIMESLOTA[5] | TIMESLOTA[4] | TIMESLOTA[3] | TIMESLOTA[2] | TIMESLOTA[1] | TIMESLOTA[0] |
| \$08    | DEVCFG5   | TIMESLOTB[7] | TIMESLOTB[6] | TIMESLOTB[5] | TIMESLOTB[4] | TIMESLOTB[3] | TIMESLOTB[2] | TIMESLOTB[1] | TIMESLOTB[0] |
| Factor  | y Default | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |

#### 3.1.4.1 PSI5 Transmission Mode Selection Bits (TRANS\_MD[1:0])

The PSI5 transmission mode selection bits select the PSI5 transmission mode as shown below.

| TRANS_MD[1] | TRANS_MD[0] | Operating Mode Reference                                |               |
|-------------|-------------|---------------------------------------------------------|---------------|
| 0           | 0           | Normal Mode (Asynchronous or Parallel, Synchronous)     | Section 4.5.1 |
| 0           | 1           | Synchronous Double Sample Rate Mode Section 4.5.1       |               |
| 1           | 0           | 16-bit Resolution Mode (2 10-bit Responses) Section 4.5 |               |
| 1           | 1           | Daisy Chain Mode                                        | Section 4.5.4 |

#### 3.1.4.2 Low-Pass Filter Selection Bit (LPF[1:0])

The low-pass filter selection bits select the low-pass filter for the acceleration signal as described below:

| LPF[1] | LPF[0] | Low-Pass Filter Selected |
|--------|--------|--------------------------|
| 0      | 0      | 400 Hz, 3-Pole           |
| 0      | 1      | 400 Hz, 4-Pole           |
| 1      | 0      | Reserved                 |
| 1      | 1      | Reserved                 |



### 3.1.4.3 TimeSlot Selection Bits (TIMESLOTx[9:0])

The timeslot selection bits select the time slot(s) to be used for data transmission. Reference Section 4.5 for details regarding PSI5 transmission modes and time slots. Accepted time slot values are  $0.5 \ \mu s$  to  $511.5 \ \mu s$  in  $0.5 \ \mu s$  increments. Care must be taken to prevent from programming time slots which violate the PSI5 Version 1.3 specification, or time slots which will cause data contention.

| TIMESLOTx[9:0] | ASYNC Bit | Time Slot                                                                         | Reference       |
|----------------|-----------|-----------------------------------------------------------------------------------|-----------------|
| 00 0000 0000   | 0         | Default Time Slot ( $t_{TIMESLOT_DFLT}$ ) from start of Sync Pulse ( $t_{TRIG}$ ) | Section 4.5     |
| 00 0000 0000   | 1         | Asynchronous Mode                                                                 | Section 4.5.1.1 |
| Non-Zero       | N/A       | TimeSlot Definition from start of Sync Pulse $(t_{TRIG})$ in 0.5µs Increments     | Section 4.5     |

Note: TIMESLOTB is only used for Synchronous Double Sample Rate Mode and 16-Bit Resolution Mode.

### 3.1.5 Device Configuration Registers 6, 7, and 8 (DEVCFG6, DEVCFG7, DEVCFG8)

Device configuration registers 6, 7 and 8 are user programmable OTP registers which contain device configuration and user specific manufacturing information. The user specific manufacturing information bits have no impact on the performance, but are transmitted during the PSI5 initialization phase 2 in 10-bit mode.

| Loc     | ation    | Bit       |          |          |          |          |          |          |          |
|---------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Address | Register | 7         | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
| \$09    | DEVCFG6  | INIT2_EXT | ASYNC    | U_DIR[1] | U_DIR[0] | U_REV[3] | U_REV[2] | U_REV[1] | U_REV[0] |
| \$0A    | DEVCFG7  | MONTH[3]  | MONTH[2] | MONTH[1] | MONTH[0] | YEAR[3]  | YEAR[2]  | YEAR[1]  | YEAR[0]  |
| \$0B    | DEVCFG8  | UD[2]     | UD[1]    | UD[0]    | DAY[4]   | DAY[3]   | DAY[2]   | DAY[1]   | DAY[0]   |
| Factory | Default  | 0         | 0        | 0        | 0        | 0        | 0        | 0        | 0        |

#### 3.1.5.1 Initialization Phase 2 Data Extension Bit (INIT2\_EXT)

The initialization phase 2 data extension bit enables or disables data transmission in data fields D27 through D32 of PSI5 Initialization Phase 2 as shown below.

| INIT2_EXT | Description                                                   |  |  |  |  |  |
|-----------|---------------------------------------------------------------|--|--|--|--|--|
| 0         | D27 through D32 are set to "0000"                             |  |  |  |  |  |
| 1         | D27 through D32 are transmitted as defined in Section 4.4.2.1 |  |  |  |  |  |

#### 3.1.5.2 Asynchronous Mode Bit (ASYNC)

The asynchronous mode bit enables asynchronous data transmission as described in Section 3.1.4.3.

#### 3.1.5.3 User Sensing Direction (U\_DIR[1:0])

The user sensing direction registers are user programmable OTP registers which contain the module level sensing direction. This data is transmitted to the main ECU during PSI5 initialization phase 2 in 10-bit mode, as described in Section 4.4.2.1.

| U_DIR[1] | U_DIR[0] | Module Sensing Direction<br>As Defined in AKLV27         | PSI5 Init Data Transmission (D8)<br>Reference Table 11 |
|----------|----------|----------------------------------------------------------|--------------------------------------------------------|
| 0        | 0        | Connector Direction ( $\beta$ )                          | 0000                                                   |
| 0        | 1        | Bushing Direction ( $\alpha$ )                           | 0100                                                   |
| 1        | 0        | Perpendicular to $\alpha$ and $\beta\left(\gamma\right)$ | 1000                                                   |
| 1        | 1        | Not used                                                 | 1100                                                   |

#### 3.1.5.4 User Product Revision (U\_REV[3:0])

The user product revision registers are user programmable OTP registers which contain the module production revision. The device supports up to 16 product revisions. This data is transmitted to the main ECU during PSI5 initialization phase 2 in 10-bit mode, as described in Section 4.4.2.1.



#### 3.1.5.5 User Production Date Information (YEAR[3:0], MONTH[3:0], DAY[4:0)

The user production date information registers are user programmable OTP registers which contain the module production date. The table below shows the relationship between the stored values and the production date.

| Programmed Value | Decoded Value | Julian Date Value |
|------------------|---------------|-------------------|
| YEAR[3:0]        | Year          | JY[6:0]           |
| 0000             | 2009          | 0001001           |
| •                | •             | •                 |
| •                | •             | •                 |
| 1111             | 2024          | 0011000           |
| MONTH[3:0]       | Month         | JM[3:0]           |
| 0000             | N/A           | 0000              |
| 0001             | January       | 0001              |
| •                | •             | •                 |
| •                | •             | •                 |
| 1100             | December      | 1100              |
| •                | •             | •                 |
| •                | •             | •                 |
| 1111             | N/A           | N/A               |
| DAY[4:0]         | Day           | JD[4:0]           |
| 00000            | N/A           | 00000             |
| 00001            | Day 1         | 00001             |
| •                | •             | •                 |
| •                |               |                   |
| 11111            | Day 31        | 11111             |

The Julian date value is transmitted to the main ECU during PSI5 initialization phase 2 in 10-bit mode, as described in Section 4.4.2.2.

#### 3.1.5.6 User Specific Data (UD[2:0])

The user specific data bits are user programmable OTP bits. These bits have no impact on device operation or performance.



### 3.1.6 Status Check Register (SC)

The status check register is a read-only register containing device status information.

| Loca    | ation    |   | Bit  |          |        |           |        |       |   |
|---------|----------|---|------|----------|--------|-----------|--------|-------|---|
| Address | Register | 7 | 6    | 5        | 4      | 3         | 2      | 1     | 0 |
| \$0C    | SC       | 0 | TM_B | RESERVED | IDEN_B | OC_INIT_B | IDEF_B | OFF_B | 0 |

#### 3.1.6.1 Test Mode Flag (TM\_B)

The test mode bit is cleared if the device is in test mode.

| TM_B | Operating Mode          |
|------|-------------------------|
| 0    | Test Mode is active     |
| 1    | Test Mode is not active |

#### 3.1.6.2 Internal Data Error Flag (IDEN\_B)

The internal data error bit is cleared if a register data error detection mismatch is detected in the user accessible OTP array. A device reset is required to clear the error.

| IDEN_B | Error Condition                                         |
|--------|---------------------------------------------------------|
| 0      | Error detection mismatch in user programmable OTP array |
| 1      | No error detected                                       |

#### 3.1.6.3 Offset Cancellation Init Status Flag (OC\_INIT\_B)

The offset cancellation initialization status bit is set once the offset cancellation initialization process is complete, and the filter has switched to normal mode.

| OC_INIT_B | Error Condition                                                           |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------|--|--|--|--|--|--|
| 0         | Offset Cancellation in initialization                                     |  |  |  |  |  |  |
| 1         | Offset Cancellation initialization complete (t_{OC1} and t_{OC2} expired) |  |  |  |  |  |  |

#### 3.1.6.4 Internal Factory Data Error Flag (IDEF\_B)

The internal factory data error bit is cleared if a register data CRC fault is detected in the factory programmable OTP array. A device reset is required to clear the error.

| IDEF_B | Error Condition                             |  |  |  |  |
|--------|---------------------------------------------|--|--|--|--|
| 0      | CRC error in factory programmable OTP array |  |  |  |  |
| 1      | No error detected                           |  |  |  |  |

#### 3.1.6.5 Offset Error Flag (OFF\_B)

The offset error flag is cleared if the acceleration signal reaches the offset limit.

| OFF_B | Error Condition       |  |  |  |
|-------|-----------------------|--|--|--|
| 0     | Offset error detected |  |  |  |
| 1     | No error detected     |  |  |  |



### 3.1.7 Manufacturer ID (MFG\_ID)

The manufacturer ID register is a user programmable OTP register that contains the PSI5 manufacturer ID. The manufacturer ID register has no impact on the performance, but is transmitted during the PSI5 initialization phase 2 in 10-bit mode.

| Location        |                    | Bit       |           |           |           |           |           |           |           |  |
|-----------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Address         | Address Register 7 |           | 7 6 5     |           | 4         | 3         | 2         | 1         | 0         |  |
| \$0D            | MFG_ID             | MFG_ID[7] | MFG_ID[6] | MFG_ID[5] | MFG_ID[5] | MFG_ID[3] | MFG_ID[2] | MFG_ID[1] | MFG_ID[0] |  |
| Factory Default |                    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |  |

# 3.2 OTP Array Error Detection

#### 3.2.1 Factory Programmed OTP Array CRC Verification

The Factory programmed OTP array is verified for errors with a 3-bit CRC. The CRC verification is enabled only when the factory programmed array is locked. The CRC verification uses a generator polynomial of  $g(x) = X^3 + X + 1$ , with a seed value = '111'.

Once the CRC verification is enabled, the CRC is continuously calculated on all bits in registers \$00, \$01, \$02, \$03, and \$04 and on the factory programmable device configuration bits with the exception of the factory lock bit. Bits are fed in from right to left (LSB first), and top to bottom (lower addresses first) in the register map. The calculated CRC is then compared against the stored 3 bit CRC. If a CRC error is detected in the OTP array, the IDEF\_B bit is cleared in the SC register.

The CRC verification is completed on the memory registers which hold a copy of the fuse array values, not the fuse array values.

#### 3.2.2 User Programmable OTP Array Error Detection

The user programmable OTP array is independently verified for errors. The Error Detection is enabled only when the LOCK\_U bit in the user data register array is set.

When a PSI5 Programming Mode "Execute Programming of NVM" command is received and the LOCK\_U bit is set, the device calculates the error detection code and writes the code to NVM, enabling the Error Detection.

Once the error detection is enabled, the error detection code is continuously calculated on all bits in registers \$05, \$06, \$07, \$08, \$09, \$0A, \$0B and \$0D with the exception of the LOCK\_U bit. The calculated code is then compared against the stored error code. If a mismatch is detected, the IDEN\_B bit is cleared in the SC register.

The error detection is completed on the memory registers which hold a copy of the fuse array values, not the fuse array values.



### 3.3 Voltage Regulators

The device derives its internal supply voltage from the V<sub>CC</sub> and V<sub>SS</sub> pins. Separate internal voltage regulators are used for the analog (V<sub>REGA</sub>) and digital circuitry (V<sub>REG</sub>). The analog and digital regulators are supplied by a buffer regulator (V<sub>BUF</sub>) to provide immunity from EMC and supply dropouts on V<sub>CC</sub>. External filter capacitors are required, as shown in Figure 1.

The voltage regulator module includes voltage monitoring circuitry which holds the device in reset following power-on until the internal voltages have increased above the undervoltage detection thresholds. The voltage monitor asserts internal reset when the external supply or internally regulated voltages fall below the undervoltage detection thresholds. A reference generator provides a reference voltage for the  $\Sigma\Delta$  converter.

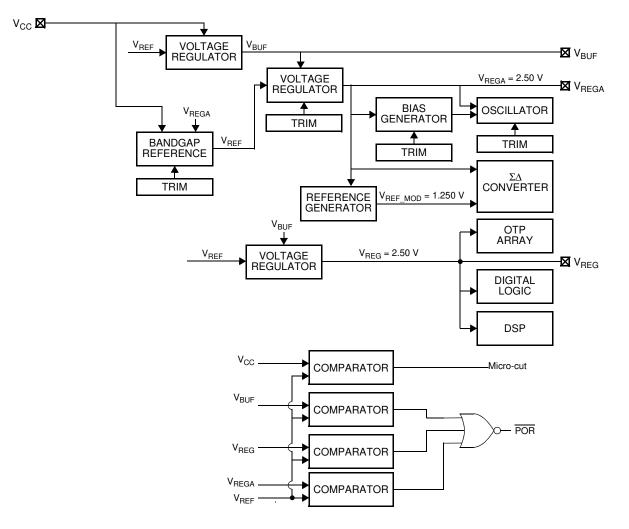



Figure 8. Voltage Regulation and Monitoring



# 3.3.1 V<sub>BUF</sub>, V<sub>REG</sub>, and V<sub>REGA</sub> Regulator Capacitor

The internal regulators require an external capacitor between each of the regulator pins ( $V_{BUF}$ ,  $V_{REG}$ , or  $V_{REGA}$ ) and the associated the  $V_{SS}$  /  $V_{SSA}$  pin for stability. Figure 1 shows the recommended types and values for each of these capacitors.

## 3.3.2 $V_{CC}$ , $V_{BUF}$ , $V_{REG}$ , and $V_{REGA}$ Undervoltage Monitor

A circuit is incorporated to monitor the supply voltage ( $V_{CC}$ ) and all internally regulated voltages ( $V_{BUF}$ ,  $V_{REG}$ , and  $V_{REGA}$ ). If any of internal regulator voltages fall below the specified undervoltage thresholds in Section 2, the device will be reset. If  $V_{CC}$ falls below the specified threshold, PSI5 transmissions are terminated for the present response. Once the supply returns above the threshold, the device will respond to the next detected sync pulse. Reference Figure 9.

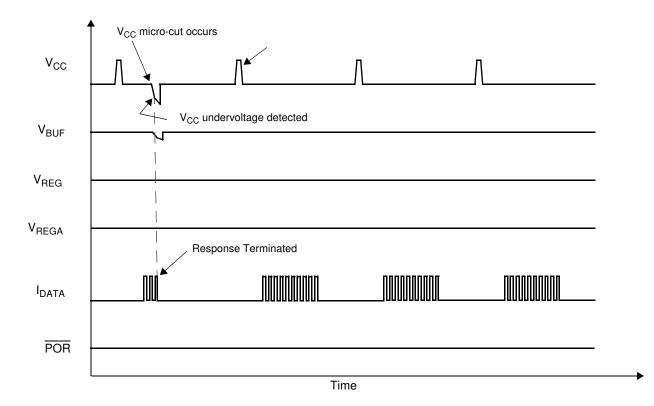



Figure 9. V<sub>CC</sub> Micro-Cut Response



# 3.3.3 V<sub>BUF</sub>, V<sub>REG</sub>, and V<sub>REGA</sub> Capacitance Monitor

A monitor circuit is incorporated to ensure predictable operation if the connection to the external V<sub>BUF</sub>, V<sub>REG</sub>, or V<sub>REGA</sub>, capacitor becomes open.

In asynchronous mode, the  $V_{BUF}$  regulator is disabled  $t_{CAPTEST\_ADLY}$  seconds after each data transmission for a duration of  $t_{CAPTEST\_TIME}$  seconds. If the external capacitor is not present, the regulator voltage will fall below the internal reset threshold, forcing a device reset.

In synchronous mode, the  $V_{BUF}$  regulator is disabled  $t_{CAPTEST\_SDLY}$  seconds after each sync pulse for a duration of  $t_{CAPTEST\_TIME}$  seconds. If the external capacitor is not present, the regulator voltage will fall below the internal reset threshold, forcing a device reset.

The  $V_{\text{REG}}$  and  $V_{\text{REGA}}$  regulators are disabled at a continuous rate ( $t_{\text{CAPTEST}_RATE$ ), for a duration of  $t_{\text{CAPTEST}_TIME}$  seconds. If either external capacitor is not present, the associated regulator voltage will fall below the internal reset threshold, forcing a device reset.

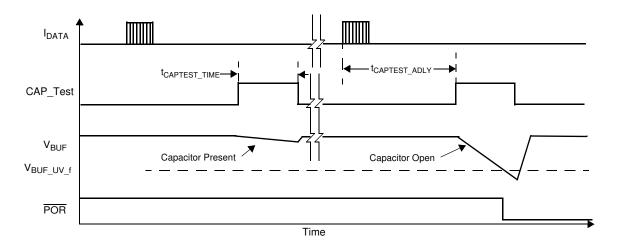



Figure 10. V<sub>BUF</sub> Capacitor Monitor - Asynchronous Mode

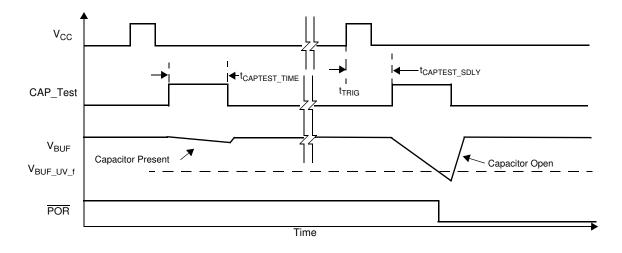
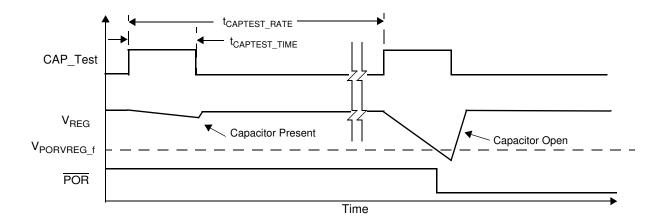
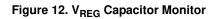





Figure 11. V<sub>BUF</sub> Capacitor Monitor - Synchronous Mode

#### MMA52xxLW







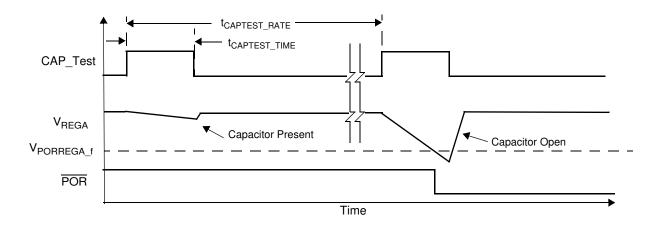



Figure 13. V<sub>REGA</sub> Capacitor Monitor

# 3.4 Internal Oscillator

A factory trimmed oscillator is included as specified in Section 2.



# 3.5 Acceleration Signal Path

#### 3.5.1 Transducer

The transducer is an overdamped mass-spring-damper system defined by the following transfer function: where:

$$H(s) = \frac{\omega_n^2}{s^2 + 2 \cdot \xi \cdot \omega_n \cdot s + \omega_n^2}$$

 $\zeta$  = Damping Ratio

 $\omega_n$  = Natural Frequency = 2 \*  $\Pi$  \*  $f_n$ 

Reference Section 2.7 for transducer parameters.

#### 3.5.2 $\Sigma \Delta$ Converter

A sigma delta modulator converts the differential capacitance of the transducer to a 1 MHz data stream that is input to the DSP block.

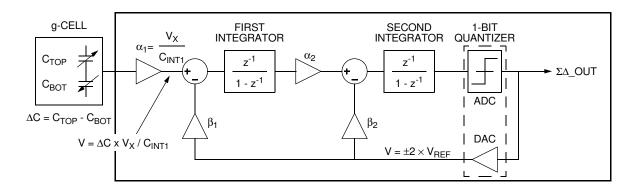



Figure 14.  $\Sigma\Delta$  Converter Block Diagram

#### 3.5.3 Digital Signal Processing Block

A Digital Signal Processing (DSP) block is used to perform signal filtering and compensation. A diagram illustrating the signal processing flow within the DSP block is shown in Figure 15.

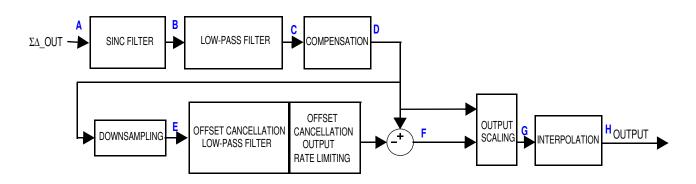
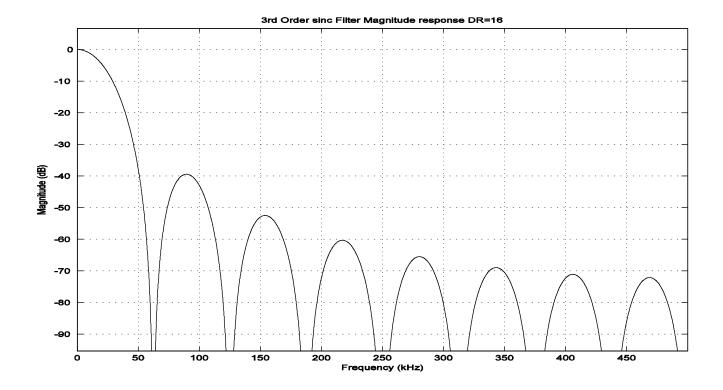



Figure 15. Signal Chain Diagram




#### Table 4. Signal Chain Characteristics

|   | Description           | Sample<br>Time<br>(µs) | Data<br>Width<br>(Bits) | Over<br>Range<br>(Bits | Signal<br>Width<br>(Bits) | Signal<br>Noise<br>(Bits) | Signal<br>Margin<br>(Bits) | Typical Block Latency     | Reference       |
|---|-----------------------|------------------------|-------------------------|------------------------|---------------------------|---------------------------|----------------------------|---------------------------|-----------------|
| Α | SD                    | 1                      | 1                       |                        | 1                         |                           |                            | 203/f <sub>osc</sub>      | Section 3.5.2   |
| В | SINC Filter           | 16                     | 20                      |                        | 13                        |                           |                            | 200/1 <sub>0SC</sub>      | Section 3.5.3.2 |
| С | Low-Pass Filter       | 16                     | 26                      | 4                      | 10                        | 3                         | 9                          | Reference Section 3.5.3.2 | Section 3.5.3.2 |
| D | Compensation          | 16                     | 26                      | 4                      | 10                        | 3                         | 9                          | 68/f <sub>osc</sub>       |                 |
| E | Down Sampling         | 16                     | 26                      | 4                      | 10                        | 3                         | 9                          | 00/1 <sub>OSC</sub>       |                 |
| F | High Pass Filter      | 16                     | 26                      | 4                      | 10                        | 3                         | 9                          | Reference Section 3.5.3.3 | Section 3.5.3.3 |
| G | DSP Sampling          | 16                     |                         |                        | 10                        |                           |                            | 4/f <sub>osc</sub>        | Section 3.5.3.5 |
|   | 10-Bit Output Scaling | .0                     |                         |                        | 10                        |                           |                            | U OSC                     | 0.0.0.0         |
| Н | Interpolation         | 1                      |                         |                        | 10                        |                           |                            | 64/f <sub>osc</sub>       | Section 3.5.3.5 |

#### 3.5.3.1 Decimation Sinc Filter

The serial data stream produced by the  $\Sigma\Delta$  converter is decimated and converted to parallel values by a 3rd order 16:1 sinc filter with a decimation factor of 16.

$$H(z) = \left[\frac{1 - z^{-16}}{16 \times (1 - z^{-1})}\right]^3$$



