imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

JFET Switching Transistors

N-Channel

Features

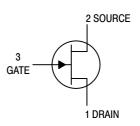
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	V _{GS}	30	Vdc
Forward Gate Current	I _{G(f)}	50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

XXX = Specific Device Code M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

MARKING & ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	· · · ·			
Gate-Source Breakdown Voltage $(I_G = 1.0 \ \mu Adc, \ V_{DS} = 0)$	V _{(BR)GSS}	30	-	Vdc
Gate Reverse Current ($V_{GS} = 15 \text{ Vdc}, V_{DS} = 0, T_A = 25^{\circ}\text{C}$) ($V_{GS} = 15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$)	I _{GSS}	-	1.0 0.20	nAdc μAdc
Gate–Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc) MMBF4391LT1, SMMBF4391LT1 MMBF4392LT1 MMBF4393LT1	V _{GS(off)}	-4.0 -2.0 -0.5	-10 -5.0 -3.0	Vdc
Off–State Drain Current ($V_{DS} = 15 \text{ Vdc}, V_{GS} = -12 \text{ Vdc}$) ($V_{DS} = 15 \text{ Vdc}, V_{GS} = -12 \text{ Vdc}, T_A = 100^{\circ}\text{C}$)	I _{D(off)}	-	1.0 1.0	nAdc μAdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current (V _{DS} = 15 Vdc, V _{GS} = 0) MMBF4391LT1, SMMBF4391LT1 MMBF4392LT1 MMBF4393LT1	I _{DSS}	50 25 5.0	150 75 30	mAdc
	V _{DS(on)}	- - -	0.4 0.4 0.4	Vdc
Static Drain-Source On-Resistance (I _D = 1.0 mAdc, V _{GS} = 0) MMBF4391LT1, SMMBF4391LT1 MMBF4392LT1 MMBF4393LT1	r _{DS(on)}	- - -	30 60 100	Ω
SMALL-SIGNAL CHARACTERISTICS				
nput Capacitance (V _{DS} = 0 Vdc, V _{GS} = -15 Vdc, f = 1.0 MHz)	C _{iss}	_	14	pF
Reverse Transfer Capacitance (V _{DS} = 0 Vdc, V _{GS} = -12 Vdc, f = 1.0 MHz)	C _{rss}	_	3.5	pF

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
MMBF4391LT1G	6J	SOT-23 (Pb-Free)	
SMMBF4391LT1G*	6J	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBF4392LT1G	6К	SOT-23 (Pb-Free)	5,000 / Tape & neer
MMBF4393LT1G	M6G	SOT-23 (Pb-Free)	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP

Capable.

TYPICAL CHARACTERISTICS

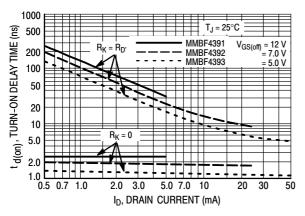


Figure 1. Turn-On Delay Time

1000 $T_J = 25^{\circ}C$ 500 $R_{K} = R_{D}$ MMBF4391 MMBF4392 MMBF4393 $V_{GS(off)} = 12 V$ = 7.0 V = 5.0 V 200 t_r, RISE TIME (ns) 100 50 20 10 Rĸ = 0 5.0 2.0 t -- --1 1.0 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 ID, DRAIN CURRENT (mA)

Figure 2. Rise Time

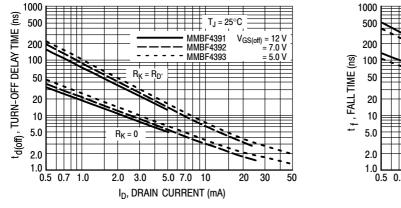


Figure 3. Turn-Off Delay Time

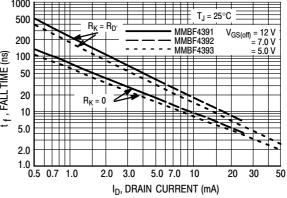


Figure 4. Fall Time

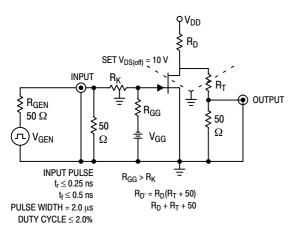


Figure 5. Switching Time Test Circuit

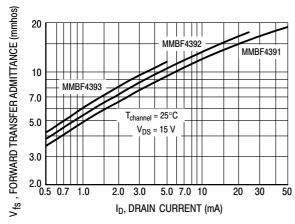
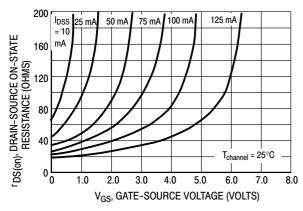
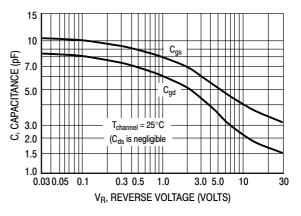
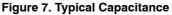
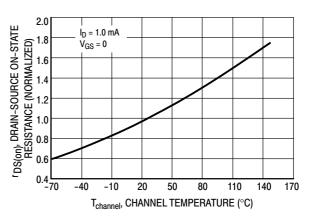
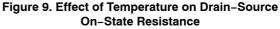



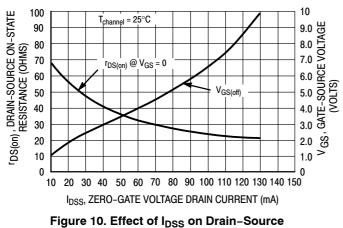
Figure 6. Typical Forward Transfer Admittance


NOTE 1


The switching characteristics shown above were measured using a test circuit similar to Figure 5. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage ($-V_{GG}$). The Drain–Source Voltage (V_{DS}) is slightly lower than Drain Supply Voltage (V_{DD}) due to the voltage divider. Thus Reverse Transfer Capacitance (C_{rss}) of Gate–Drain Capacitance (C_{gd}) is charged to $V_{GG} + V_{DS}$.


During the turn–on interval, Gate–Source Capacitance (C_{gs}) discharges through the series combination of R_{Gen} and R_K . C_{gd} must discharge to $V_{DS(on)}$ through R_G and R_K in series with the parallel combination of effective load impedance (R'_D) and Drain–Source Resistance (r_{DS}). During the turn–off, this charge flow is reversed.


Predicting turn–on time is somewhat difficult as the channel resistance r_{DS} is a function of the gate–source voltage. While C_{gs} discharges, V_{GS} approaches zero and r_{DS} decreases. Since C_{gd} discharges through r_{DS} , turn–on time is non–linear. During turn–off, the situation is reversed with r_{DS} increasing as C_{gd} charges.

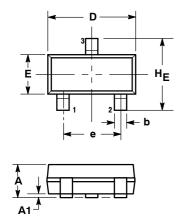

The above switching curves show two impedance conditions; 1) R_K is equal to $R_{D'}$ which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2) $R_K = 0$ (low impedance) the driving source impedance is that of the generator.

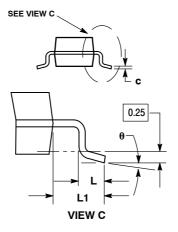
Resistance and Gate-Source Voltage

NOTE 2

The Zero–Gate–Voltage Drain Current (I_{DSS}) is the principle determinant of other J–FET characteristics. Figure 10 shows the relationship of Gate–Source Off Voltage (V_{GS(off)}) and Drain–Source On Resistance ($r_{DS(on)}$) to I_{DSS}. Most of the devices will be within $\pm 10\%$ of the values shown in Figure 10. This data will be useful in predicting the characteristic variations for a given part number.

For example:


Unknown


r_{DS(on)} and V_{GS} range for an MMBF4392

The electrical characteristics table indicates that an MMBF4392 has an I_{DSS} range of 25 to 75 mA. Figure 10 shows $r_{DS(on)} = 52 \Omega$ for I_{DSS} = 25 mA and 30 Ω for I_{DSS} = 75 mA. The corresponding V_{GS} values are 2.2 V and 4.8 V.

PACKAGE DIMENSIONS

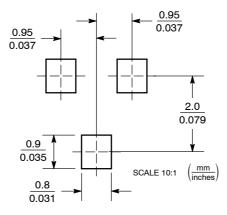
SOT-23 (TO-236) CASE 318-08 **ISSUE AP**

NOTES:

STYLE 10:

PIN 1. 2 DRAIN

GATE 3


SOURCE

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

- 3
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. 4 PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104
θ	0°		10°	0°		10°

SOLDERING FOOTPRINT

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All or operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative