imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Switching Transistors

NPN Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	15	Vdc
Collector-Emitter Voltage	V _{CES}	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.5	Vdc
Collector Current – Continuous	Ι _C	200	mAdc

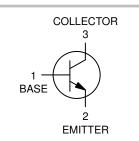
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	PD	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	TJ, Tstg	-55 to +150	°C

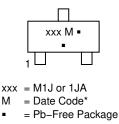
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.



ON Semiconductor®


www.onsemi.com

SOT-23 CASE 318 STYLE 6

MARKING DIAGRAM

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

r	1	
Device	Package	Shipping [†]
MMBT2369LT1G	SOT–23 (Pb–Free)	3,000 / Tape & Reel
SMMBT2369LT1G	SOT–23 (Pb–Free)	3,000 / Tape & Reel
MMBT2369ALT1G	SOT–23 (Pb–Free)	3,000 / Tape & Reel
SMMBT2369ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please

Brochure, BRD8011/D.

refer to our Tape and Reel Packaging Specifications

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Relefence Manual, SOLDERRIWD.

Semiconductor Components Industries, LLC, 2016 October, 2016 – Rev. 10

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 3) $(I_{C} = 10 \text{ mAdc}, I_{B} = 0)$	V _{(BR)CEO}	15	-	-	Vdc
Collector – Emitter Breakdown Voltage $(I_{C} = 10 \ \mu Adc, \ V_{BE} = 0)$	V _{(BR)CES}	40	-	_	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	40	-	_	Vdc
Emitter – Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	4.5	-	_	Vdc
	І _{СВО}			0.4 30	μAdc
Collector Cutoff Current MMBT2369A (V_{CE} = 20 Vdc, V_{BE} = 0)	I _{CES}	-	-	0.4	μAdc
ON CHARACTERISTICS		•	•	•	4
$\begin{array}{l} \text{DC Current Gain (Note 3)} \\ \text{MMBT2369 (I}_{C} = 10 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, V}_{CE} = 0.35 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, V}_{CE} = 0.35 \text{ Vdc}, \text{T}_{A} = -55^{\circ}\text{C}) \\ \text{MMBT2369A (I}_{C} = 30 \text{ mAdc, V}_{CE} = 0.4 \text{ Vdc}) \\ \text{MMBT2369 (I}_{C} = 100 \text{ mAdc, V}_{CE} = 2.0 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ \end{array}$	h _{FE}	40 - 40 20 30 20 20	- - - - - -	120 120 - - - - -	_
$\begin{array}{l} \mbox{Collector} - \mbox{Emitter Saturation Voltage (Note 3)} \\ \mbox{MMBT2369 (I}_{C} = 10 \mbox{ mAdc}, I_{B} = 1.0 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 10 \mbox{ mAdc}, I_{B} = 1.0 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 10 \mbox{ mAdc}, I_{B} = 1.0 \mbox{ mAdc}, T_{A} = +125^{\circ}\mbox{C}) \\ \mbox{MMBT2369A (I}_{C} = 30 \mbox{ mAdc}, I_{B} = 3.0 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MBT2369A (I}_{C} = 100 \mbox{ mAdc}) \\$	V _{CE(sat)}		- - - -	0.25 0.20 0.30 0.25 0.50	Vdc
$\begin{array}{l} \text{Base}-\text{Emitter Saturation Voltage (Note 3)} \\ \text{MMBT2369/A (I}_{C}=10 \text{ mAdc, I}_{B}=1.0 \text{ mAdc}) \\ \text{MMBT2369A (I}_{C}=10 \text{ mAdc, I}_{B}=1.0 \text{ mAdc, T}_{A}=-55^{\circ}\text{C}) \\ \text{MMBT2369A (I}_{C}=30 \text{ mAdc, I}_{B}=3.0 \text{ mAdc}) \\ \text{MMBT2369A (I}_{C}=100 \text{ mAdc, I}_{B}=10 \text{ mAdc}) \end{array}$	V _{BE(sat)}	0.7 _ _ _	- - - -	0.85 1.02 1.15 1.60	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	_	_	4.0	pF
Small Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	h _{fe}	5.0	-	_	-
SWITCHING CHARACTERISTICS					
Storage Time ($I_{B1} = I_{B2} = I_C = 10 \text{ mAdc}$)	t _s	-	5.0	13	ns
Turn–On Time $(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc})$	t _{on}	_	8.0	12	ns
Turn–Off Time (V_{CC} = 3.0 Vdc, I_C = 10 mAdc, I_{B1} = 3.0 mAdc, I_{B2} = 1.5 mAdc)	t _{off}	-	10	18	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

*Total shunt capacitance of test jig and connectors.

Figure 3. toff Circuit – 10 mA

Figure 4. toff Circuit – 100 mA

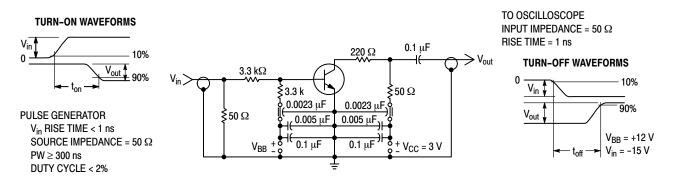


Figure 5. Turn-On and Turn-Off Time Test Circuit

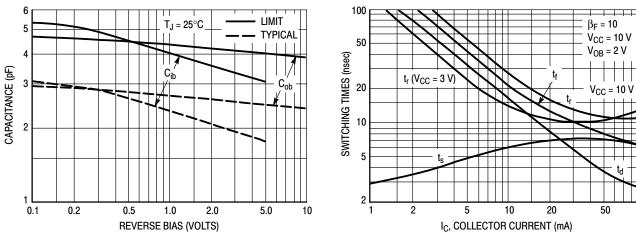
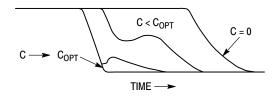
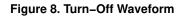




Figure 6. Junction Capacitance Variations

100

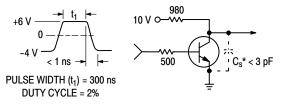
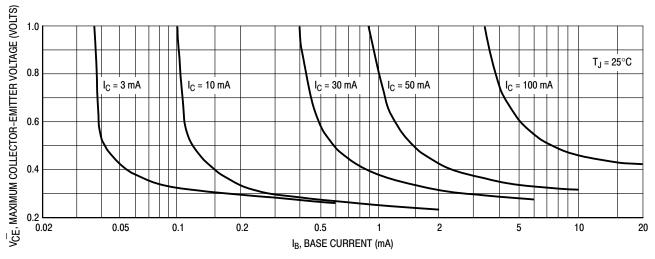



Figure 9. Storage Time Equivalent Test Circuit

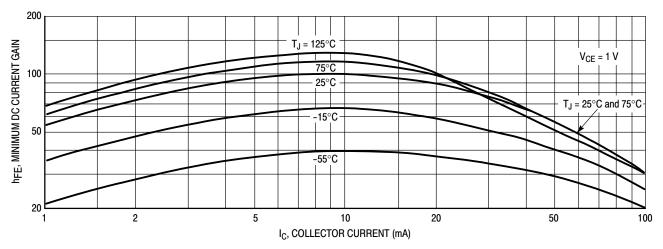


Figure 11. Minimum Current Gain Characteristics

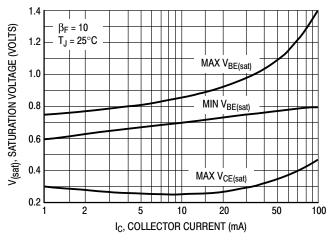
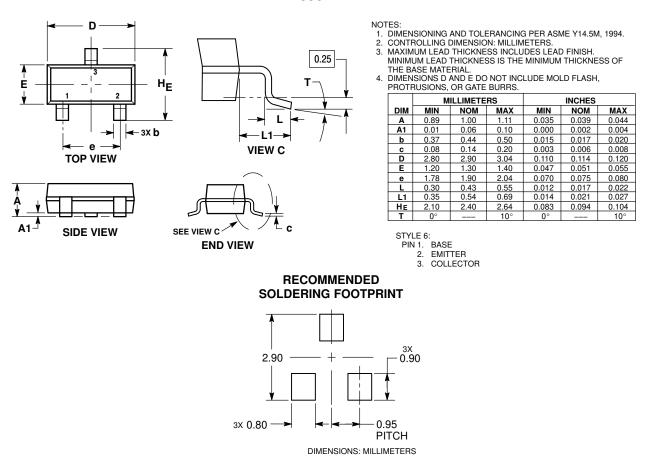



Figure 12. Saturation Voltage Limits

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AR

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Depart 401 00 200 0010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative