

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Purpose Transistors

NPN Silicon

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

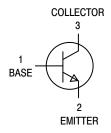
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ic	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction–to–Ambient (Note 2)	$R_{\theta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad


ON Semiconductor®

www.onsemi.com

GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

SOT-416/SC-75 CASE 463 STYLE 1

MARKING DIAGRAM

AM = Device Code M = Date Code*

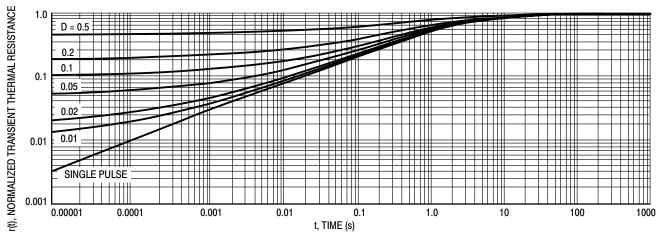
= Pb-Free Package

(Note: Microdot may be in either location)

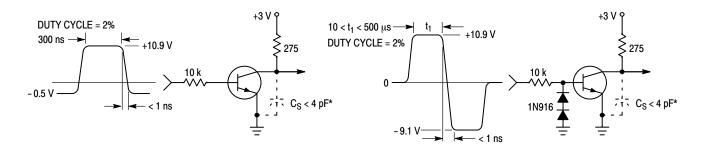
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT3904TT1G	SOT-416 (Pb-Free)	3,000 Tape & Reel
SMMBT3904TT1G	SOT-416 (Pb-Free)	3,000 Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTE	RISTICS	1 1		•	•
Collector – Emitter (I _C = 1.0 mAdc,	Breakdown Voltage (Note 3) I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector – Base B (I _C = 10 μAdc, I	reakdown Voltage E = 0)	V _{(BR)CBO}	60	-	Vdc
Emitter – Base Bre (I _E = 10 μAdc, I		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Curre (V _{CE} = 30 Vdc,		I _{BL}	-	50	nAdc
Collector Cutoff C (V _{CE} = 30 Vdc,		I _{CEX}	-	50	nAdc
ON CHARACTER	RISTICS (Note 3)	1		1	II.
DC Current Gain $ \begin{pmatrix} I_C = 0.1 \text{ mAdc,} \\ I_C = 1.0 \text{ mAdc,} \\ I_C = 10 \text{ mAdc,} \\ I_C = 50 \text{ mAdc,} \\ I_C = 100 \text{ mAdc,} \\ \end{pmatrix} $	$V_{CE} = 1.0 \text{ Vdc}$ $V_{CE} = 1.0 \text{ Vdc}$	h _{FE}	40 70 100 60 30	- 300 - -	-
		V _{CE(sat)}	- -	0.2 0.3	Vdc
Base – Emitter Sat (I _C = 10 mAdc, (I _C = 50 mAdc,	$I_B = 1.0 \text{ mAdc}$	V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL	CHARACTERISTICS			•	•
	Bandwidth Product V _{CE} = 20 Vdc, f = 100 MHz)	f _T	300	_	MHz
Output Capacitan (V _{CB} = 5.0 Vdc,	ce I _E = 0, f = 1.0 MHz)	C _{obo}	-	4.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc,	P I _C = 0, f = 1.0 MHz)	C _{ibo}	-	8.0	pF
Input Impedance (V _{CE} = 10 Vdc,	I _C = 1.0 mAdc, f = 1.0 kHz)	h _{ie}	1.0	10	kΩ
Voltage Feedback (V _{CE} = 10 Vdc,	Ratio $I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$	h _{re}	0.5	8.0	X 10 ⁻⁴
Small-Signal Cur (V _{CE} = 10 Vdc,	rrent Gain I _C = 1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-
Output Admittance (V _{CE} = 10 Vdc,	$I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$	h _{oe}	1.0	40	μmhos
Noise Figure (V _{CE} = 5.0 Vdc,	I_C = 100 μ Adc, R_S = 1.0 k Ω , f = 1.0 kHz)	NF	-	5.0	dB
SWITCHING CHA	RACTERISTICS				
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$ MMBT3904TT1G, SMMBT3904TT1G	t _d	-	35	
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 mAdc) MMBT3904TT1G, SMMBT3904TT1G	t _r	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc) MMBT3904TT1G, SMMBT3904TT1G	t _s	-	200	
Fall Time $(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ MMBT3904TT1G, SMMBT3904TT1G		t _f	-	50	
	•			•	

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Figure 1. Normalized Thermal Response

* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit

Figure 3. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

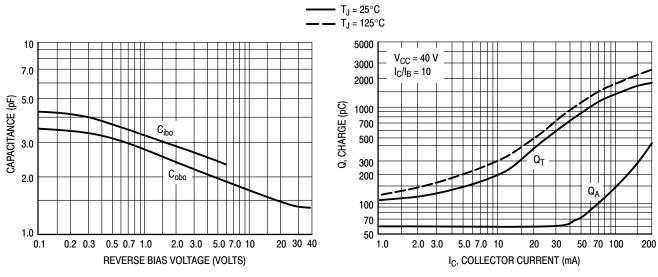
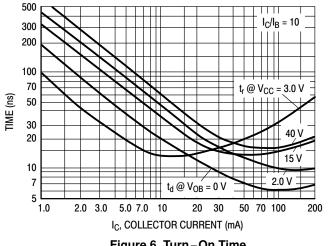



Figure 4. Capacitance

Figure 5. Charge Data

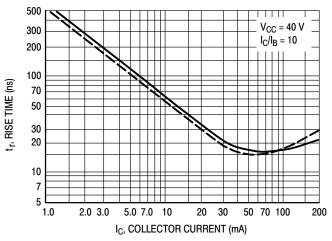
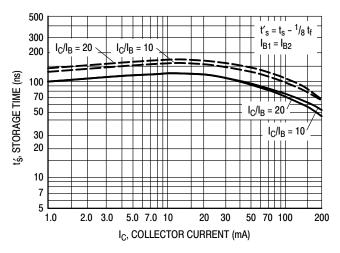



Figure 6. Turn-On Time

Figure 7. Rise Time

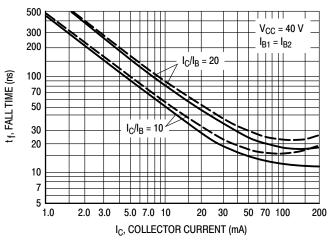
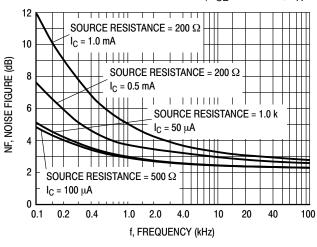



Figure 8. Storage Time

Figure 9. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE VARIATIONS**

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

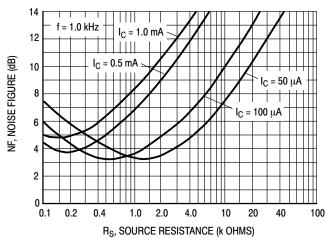
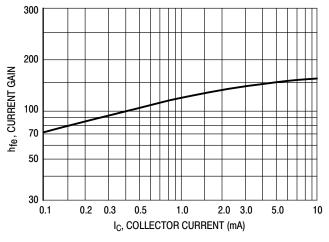
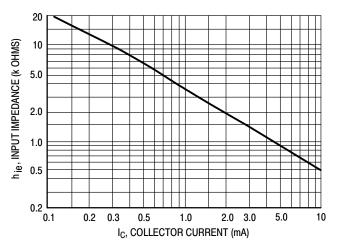



Figure 10. Noise Figure

Figure 11. Noise Figure

h PARAMETERS


 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

100 h_{0e}, OUTPUT ADMITTANCE (μ mhos) 50 20 10 2 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 IC, COLLECTOR CURRENT (mA)

Figure 12. Current Gain

Figure 13. Output Admittance

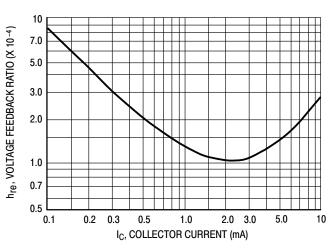


Figure 14. Input Impedance

Figure 15. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

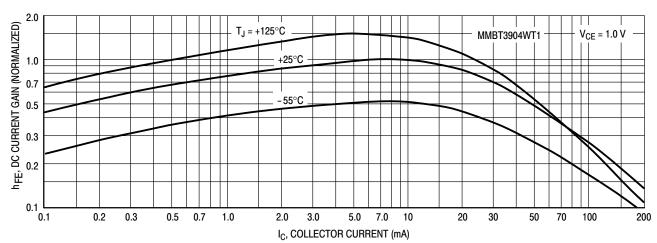


Figure 16. DC Current Gain

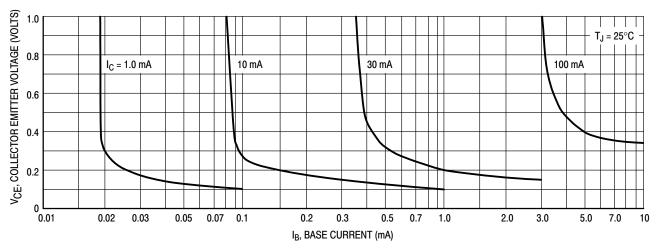
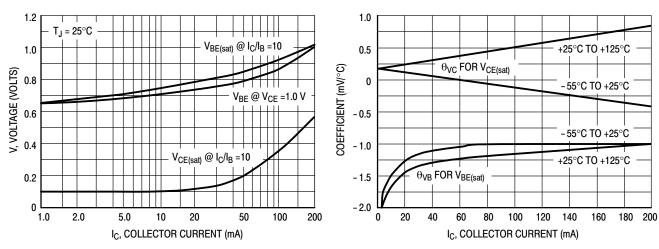
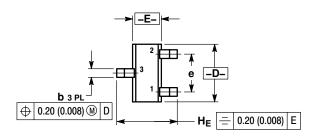


Figure 17. Collector Saturation Region

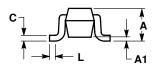

Figure 18. "ON" Voltages

Figure 19. Temperature Coefficients

PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463 ISSUE G

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 VIA EM 1000
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS INCHES				;	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.061	0.063	0.065
E	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.060	0.063	0.067

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

mm

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor desensed and or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative