Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## **Switching Transistor** ### **NPN Silicon** ### **Features** - S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------|------| | Collector - Emitter Voltage | V_{CEO} | 40 | Vdc | | Collector - Base Voltage | V _{CBO} | 60 | Vdc | | Emitter – Base Voltage | V _{EBO} | 6.0 | Vdc | | Collector Current – Continuous | I _C | 600 | mAdc | | Collector Current – Peak | I _{CM} | 900 | mAdc | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------------------------|-------------|-------------| | Total Device Dissipation FR-5 Board
(Note 1) @T _A = 25°C
Derate above 25°C | P _D | 225
1.8 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 556 | °C/W | | Total Device Dissipation Alumina
Substrate (Note 2) @T _A = 25°C
Derate above 25°C | P _D | 300
2.4 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 417 | °C/W | | Junction and Storage Temperature | T _J , T _{stg} | -55 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1 *Transient pulses must not cause the junction temperature to be exceeded. - 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in. - 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina. ### ON Semiconductor® #### www.onsemi.com SOT-23 (TO-236) CASE 318 STYLE 6 ### **MARKING DIAGRAM** 2X = Specific Device Code M = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | | | |-------------------------------|---------------------|-------------------------|--|--| | MMBT4401LT1G
SMMBT4401LT1G | SOT-23
(Pb-Free) | 3000 / Tape &
Reel | | | | MMBT4401LT3G | SOT-23
(Pb-Free) | 10,000 / Tape &
Reel | | | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure. BRD8011/D. ### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Cha | Symbol | Min | Max | Unit | | | |--|--|----------------------|-----------------------------|-------------------------|--------------------|--| | OFF CHARACTERISTICS | | | | • | • | | | Collector - Emitter Breakdown Voltage | V _{(BR)CEO} | 40 | - | Vdc | | | | Collector - Base Breakdown Voltage | $(I_C = 0.1 \text{ mAdc}, I_E = 0)$ | V _{(BR)CBO} | 60 | - | Vdc | | | Emitter-Base Breakdown Voltage | $(I_E = 0.1 \text{ mAdc}, I_C = 0)$ | V _{(BR)EBO} | 6.0 | - | Vdc | | | Base Cutoff Current | $(V_{CE} = 35 \text{ Vdc}, V_{EB} = 0.4 \text{ Vdc})$ | I _{BEV} | - | 0.1 | μAdc | | | Collector Cutoff Current | (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc) | I _{CEX} | - | 0.1 | μAdc | | | ON CHARACTERISTICS (Note 3) | | | • | • | | | | DC Current Gain | | h _{FE} | 20
40
80
100
40 | -
-
-
300
- | - | | | Collector - Emitter Saturation Voltage | $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$ | V _{CE(sat)} | _
_ | 0.4
0.75 | Vdc | | | Base – Emitter Saturation Voltage | V _{BE(sat)} | 0.75
- | 0.95
1.2 | Vdc | | | | SMALL-SIGNAL CHARACTERISTIC | es . | | • | • | | | | Current-Gain - Bandwidth Product | (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz) | f _T | 250 | - | MHz | | | Collector-Base Capacitance | $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$ | C _{cb} | - | 6.5 | pF | | | Emitter-Base Capacitance | $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$ | C _{eb} | - | 30 | pF | | | Input Impedance | mpedance $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$ | | 1.0 | 15 | kΩ | | | Voltage Feedback Ratio | atio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$ | | 0.1 | 8.0 | X 10 ⁻⁴ | | | Small-Signal Current Gain | $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$ | h _{fe} | 40 | 500 | _ | | | Output Admittance | $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$ | h _{oe} | 1.0 | 30 | μmhos | | | SWITCHING CHARACTERISTICS | | | - | | | | | Delay Time | (V _{CC} = 30 Vdc, V _{EB} = 2.0 Vdc, | t _d | - | 15 | ne | | | Rise Time | I _C = 150 mAdc, I _{B1} = 15 mAdc) | t _r | - | 20 | ns | | | Storage Time | $(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$ | t _s | - | 225 | ne | | | Fall Time | $I_{B1} = I_{B2} = 15 \text{ mAdc}$ | t _f | - | 30 | ns | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%. ### **SWITCHING TIME EQUIVALENT TEST CIRCUITS** Figure 1. Turn-On Time Figure 2. Turn-Off Time ### TRANSIENT CHARACTERISTICS Figure 3. Charge Data Figure 4. Turn-On Time Figure 5. Rise and Fall Times Figure 6. Storage Time Figure 7. Fall Time ### SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE $V_{CE} = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$; Bandwidth = 1.0 Hz Figure 8. Frequency Effects Figure 9. Source Resistance Effects ### **h PARAMETERS** $$V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$$ This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were selected from the MMBT4401LT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph. Figure 10. Input Impedance Figure 11. Voltage Feedback Ratio Figure 12. Output Admittance ### STATIC CHARACTERISTICS Figure 13. DC Current Gain Figure 14. Collector Saturation Region Figure 15. Collector–Emitter Saturation Voltage vs. Collector Current Figure 16. Temperature Coefficients ### STATIC CHARACTERISTICS Figure 17. Base-Emitter Saturation Voltage vs. **Collector Current** Figure 18. Base-Emitter Turn On Voltage vs. **Collector Current** Figure 19. Input Capacitance vs. Emitter Base Voltage Figure 20. Output Capacitance vs. Collector **Base Voltage** Figure 21. Safe Operating Area Figure 22. Current-Gain-Bandwidth Product ### PACKAGE DIMENSIONS SOT-23 (TO-236) CASE 318-08 ISSUE AR #### NOTES: - I. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.039 | 0.044 | | A1 | 0.01 | 0.06 | 0.10 | 0.000 | 0.002 | 0.004 | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.017 | 0.020 | | С | 0.08 | 0.14 | 0.20 | 0.003 | 0.006 | 0.008 | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | E | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.080 | | L | 0.30 | 0.43 | 0.55 | 0.012 | 0.017 | 0.022 | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.027 | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | Т | 0° | | 10° | 0° | | 10° | #### STYLE 6: - PIN 1. BASE - EMITTER - 3. COLLECTOR # RECOMMENDED SOLDERING FOOTPRINT* *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the united States and/or other countries. On Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any s ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Phone: 81–3–5817–1050